LPLWIN 6.115 SANS OPTION

Logiciel de résolution de l'équilibre calco-carbonique des eaux selon la méthode Legrand Poirier Leroy

Mode d'emploi installation - Glossaire

A importation semi-automatique à la chaine d'analyses xls

B calcul des indices Béton/ciments

Compagnie Industielle de Filtration et d'Equipement Chimique CIFEC - 12 bis, rue du Cdt Pilot - 92200 Neuilly sur Seine – France Tél : +33 (0)1 4640 4949 – Fax : +33 (0)1 4640 0087 Web: <u>www.cifec.fr</u> – Email : <u>info@cifec.fr</u> – Boutique : <u>www.shop.cifec.fr</u>

TABLE des MATIERES

1) Installation et mise en route de LPLWin	3
1-1) Configuration minimale:	3
1-2) Limitation informatique d'utilisation :	3
1-3) Installation :	3
1-4) DÉPANNAGE en cas de problème lors de l'installation :	3
1-5) Désinstallation :	4
1-6) Mise en route :	4
1-7) Aide intégrée et mode d'emploi:	4
2) PRESENTATION du logiciel LPLWin 6	5
3) VALIDATION de l'installation	13
4) GLOSSAIRE	18
4-1) Domaine d'application du programme :	18
4-2) Paramètres minimums obligatoires à mesurer sur le terrain :	18
4-3) Conductivité électrique :	18
4-4) CO2 total, CO2libre :	18
4-5) Concentrations à l'équilibre :	19
4-6) SatuRatio :	19
4-7) SatuCO2 :	19
4-8) Ecart de balance ionique :	19
4-9) Eléments caractéristiques :	20
4-10) Eléments fondamentaux :	20
4-11) Essai au marbre :	20
4-12) Force ionique :	20
4-13) Indice de saturation de LANGELIER :	20
4-14) lambda :	20
4-15) Masse moléculaire Valence :	21
4-16) pH (mesure et d'équilibre)	21
4-17) Somme des anions :	22
4-18) Somme des cations :	22
4-19) TA et alcalinité composite :	22
4-20) TAC et alcalinité totale :	22
4-21) TH :	22
4-22) Unités :	22
4-23) CO2 équilibrant : par rapport à l'équilibre à [Ca ²⁺] constant	23
4-24) CO ₂ excédentaire : par rapport à l'équilibre à [Ca ²⁺] constant	23
4-25) CO2 agressif : par rapport à l'équilibre de l'essai au marbre	23
4-26) Agressivité totale ou Agressivité au calcaire :	23
4-27) Indices de corrosivité, Larson et Leroy :	24
4-28) Classes d'eau selon la réglementation en France, définie par la DGS :	24

1) Installation et mise en route de LPLWin

1-1) Configuration minimale:

- poste station Windows 7 / 8 / 10 (non serveur).

- port USB

1-2) Limitation informatique d'utilisation :

Ce logiciel monoposte est compatible avec Windows, mais pas Windows serveur ou Windows virtuel. Cette version permet d'installer le logiciel autant de fois que nécessaire, mais **ne fonctionnera que si la clé USB plate (avec porte-clés Cifec) fournie est directement connectée sur le poste**, et donc que sur un seul poste simultanément. **Ne perdez pas cette clé !**

1-3) Installation :

 a) Mettre en route Windows et fermer tous les programmes en cours sur le poste que vous voulez équiper. Attention: pour permettre l'installation, vous devez avoir des droits administrateur sur Windows. Si nécessaire demander assistance à votre service informatique.

b) Insérer, dans le port USB du poste, la clé USB noire avec le porte clé CIFEC, contenant le fichier SETUPLPLWIN6xxx.exe.

c) Taper dans la barre de recherche de Windows (en bas à gauche) Explorateur, et ouvrir l'Explorateur de fichier Windows. **Ouvrir dans l'explorateur le lecteur USB inséré.** Cliquer avec le bouton DROIT sur le fichier de la clé :

SETUPLPLWINV6115.exe,

dans le menu apparaissant, sur "Exécuter en tant qu'administrateur".

d) Suivre les indications d'installation.

Le programme d'installation va créer, **sur le bureau et le menu démarrer, l'icône :** LPLWIN6115,

permettant de démarrer le programme LPLWINV6115xx.EXE se trouvant dans le dossier "PROGRAM FILES(x86)\LPLWIN6".

e) Une fois l'installation terminée, vous pouvez déconnecter du poste la clé USB, mais elle sera nécessaire pour utiliser LPLWin, ou l'utiliser pour installer LPLWin sur un autre poste. Voir 1-6) Mise en route

1-4) DÉPANNAGE en cas de problème lors de l'installation :

- Si dans le bordereau de saisie d'analyse les légendes s'affichent mal (absence de légendes ou caractères illisibles): en tant qu'administrateur du poste, réinstaller la police de caractères CIFECN_.TTF se trouvant sur la clé USB d'installation (en forme de bouteille). Fermer LPLWin et redémarrer Windows. Rouvrir LPLWIN, les légendes doivent maintenant apparaître normalement.

- Si le logiciel ne tient pas compte de décimales saisies, aller dans le PANNEAU de CONFIGURATION de Windows dans l'icône PARAMÈTRE RÉGIONAUX puis dans l'onglet NOMBRE et vérifier que le symbole décimal (point ou virgule) est celui que vous utilisez pour la saisie des valeurs, de même dans l'onglet SYMBOLE MONÉTAIRE.

- Si nécessaire désactiver temporairement vos ANTI-VIRUS pendant l'installation.

- Fermer tous les programmes en cours.

- Après installation du logiciel, nous vous conseillons d'arrêter votre PC et de le refaire démarrer pour forcer votre poste à tenir compte des mises à jour éventuelles des fichiers systèmes.

- Si vous n'arrivez pas à ouvrir un fichier d'analyse (.lpw) : vérifier la taille de ce fichier avec l'explorateur Windows. Si le fichier a une taille de zéro octet, vos droits Windows sont insuffisants pour écrire via LPLWin dans ce répertoire et le fichier est vide. Faite un test, en sauvegardant une analyse (.lpw) sur une clé USB par exemple, vous verrez que vous pourrez rouvrir l'analyse ce qui confirme un problème de droits d'accès.

- Si le problème persiste contacter M. Luc Derreumaux à la CIFEC : Tél: 33 (0)1 4640 4912 ou Email: LD@CIFEC.FR

1-5) Désinstallation :

Cliquer sur "Démarrer / "paramètres" / "panneau de configuration" / "Ajout-Suppression de programmes" / "LPLWIN6" puis "Désinstaller".

Fermer toutes les fenêtres et arrêter votre PC, puis le redémarrer.

1-6) Mise en route :

- 1) Mettre en route Windows.
- Connecter la clé USB plate ayant un porte-clés CIFEC au poste : Clé noire plate : LPLWIN6115,
- 3) Mettre en route le programme en cliquant sur l'icone LPLW6115xx du bureau ou sur "Démarrer", puis "Programmes", et sur l'icône LPLWIN6115xx.
- 4) Lors de la première utilisation, vous pouvez valider votre installation via l'analyse de validation à saisir pour vérifier les résultats obtenus, voir le chapitre suivant 3) Validation de l'installation.
- 5) Enregistrer, auprès de nous, votre licence en complétant le formulaire accessible au démarrage.
- 6) Pour arrêter le programme il faut cliquer sur <u>Q</u>uitter dans le menu Fichier.

1-7) Aide intégrée et mode d'emploi:

A tout moment, utiliser les touches de fonctions :

F1 pour obtenir de l'aide contextuelle Ctrl + F1 pour obtenir l'aide sur le contenu général

F2 pour obtenir l'aide sur les menus

Ou aller dans le menu Aide, voir ci-dessous :

🚺 LPLWin 6.01.11

Fichier Options Affichage Fer	êtres Aide
🗄 🗋 💕 🚳 📲 🖼 🖨 - 📘 💥 🖁	Comment faire pour
	Contenu général Ctrl+F1
	Glossaire
	Aide sur les Menus F2
	A propos de 🕨
	Mise à jour disponible : 🔹 🕨

2) PRESENTATION du logiciel LPLWin 6

(Vue de la version 6 avec options)

LPLWIN6 permet de savoir rapidement, à partir de l'analyse, si une eau est à l'équilibre, agressive ou incrustante vis à vis du carbonate de calcium conformément à la circulaire NDGS/SD7A n°2007-39 du 23/01/07.

La saisie manuelle ou l'importation Excel se fait dans l'unité de son choix (mg/l, mmol/l, me/l, °F, °D, ppm), pour chacune des valeurs. Après contrôle de la cohérence des valeurs entrées et affichage des permet résultats. le programme de calculer l'incertitude des résultats (méthode Monte-Carlo), de simuler des traitements, de calculer des doses et d'obtenir le **graphique** $CO_2t = f(Ca^{2+})$ de chaque étape. Il est possible d'explorer le graphique point par point et de connaître les caractéristiques de l'eau en tous points du plan. Le programme permet l'impression et l'enregistrement des résultats de l'analyse.

Le logiciel étant développé pour **Windows**, le **copier/coller** vers d'autres programmes Windows (tableur, traitement de texte...) permet l'exploitation directe des résultats.

Les résultats sont **quantitatifs** et non qualitatifs, contrairement aux autres méthodes graphiques ou indicielles qui sont des **approximations** ne se justifiant plus, maintenant que l'informatique permet de résoudre rapidement par itération les équations de l'équilibre calco-carbonique. Le programme utilise pour cela la méthode française, de Messieurs LEGRAND, **P**OIRIER et LEROY (voir Ouvrage).

Plus de renseignements : voir <u>http://www.lplwin.fr</u> .

<u>Utilisateurs du logiciel</u> : laboratoire d'hydrologie, traiteur d'eau, bureau d'étude, concepteur et fabricant de matériel de traitement d'eau, industriel utilisant de l'eau qu'il faut traiter.

Paramètres minimums de l'analyse permettant les calculs et simulations: **Température (sur site)**, **pH (sur site)**, **TAC**, **Calcium**. La connaissance des principaux anions cations majoritaires permet de tenir compte de la force ionique avec précision.

Formation continue : un à quatre jours par les développeurs du logiciel, voir dernière page.

<u>Ouvrage</u> de référence "**Prévention de la** corrosion et de l'entartrage..." de Luc LEGRAND et Pierre LEROY, disponible auprès de la CIFEC, voir <u>http://www.lplwin.fr</u>.

PRINCIPALES NOUVEAUTES version 6 / Version5

- Saisie du CO₂ dissout mesuré par sonde.
- Nouveaux paramètres : **Ba²⁺**, **Sr²⁺** et calcul de **solubilité** de Ba / SrSO₄, Ba / SrCO₃, et de CaSO₄.
- Domaine d'utilisation étendu aux eaux de mer ($\mu \rightarrow 1$ M).
- Nombre d'eaux à l'écran jusqu'à 100 et d'étapes de traitements illimité et en parallèle.
- Possibilité de simuler des variantes de traitements.
- Arborescence interactive visualisant les traitements et variantes. Accès en cliquant dans l'arborescence.
- Graphique optimisé interactif pouvant visualiser 4 eaux simultanément et nombreuses options d'affichage.
- Liste de réactifs commerciaux de floculation évolutive.
- Mélange de plusieurs eaux ou étapes.
- Rapport de calculs personnalisable.
- Aide dédiée pour chaque fenêtre par la touche F1.
- 2 options payantes: Calcul semi-automatisé à la chaine de l'équilibre à partir d'un fichier Excel Calcul d'indices d'agressivité vis-à-vis des bétons.

Saisie d'analyse et résultats :

La saisie de l'analyse se fait très simplement au clavier en remplissant la grille de saisie ou par importation de fichier (formats: XLS, LPLWIN). Pour lancer le calcul, il suffit de cliquer sur le bouton [Calculer].

Grille de						Résul	ltats	Equili	bres (CaCO ₃	et CO_2	Atm.	Le p	oint T
Paramètres		Valeurs	Unités	me/l	Paramètres	Résultats	Unités	Equilibre	Ca Cst.	Marbre	Atmosphère	Point T	Unités	
Température		60,00	°C		Σ Cations	289,387	me/I	pН	6,32	6,57	8,94	7,76		
Conductivité	с	10926,1	µS/cm	19737,3	Σ Anions	313,641	me/I	∆pH	-1,19	-0,94	1,43	Equi	libre avec C	aCO3
pН	с	7,52			Balance	-8,04	%	∆ CaCO ₃		-109,069		ETC	O2 gazeux	
TH	с	335,67	٩f	67,134	H ₂ CO;	10,42	mg/I CO2	∆ CO₂	155,31		-10,13	_	mg/l	
TA			٩f		HCO3	341,67	mg/l	TAC	28,40	17,49	28,40	1,39	٩f	
TAC (pH 4,5)		28,10	٩f	5,680	CO3-	2,29	mg/l	H ₂ CO;	164,04	56,75	0,29	0,29	mg/I CO2	
CO ₂ libre (pH 8,2)		10,00	mg/l	0,196	CO ₂ Total	5,88	mmol/I	HCO ₃	346,18	213,07	251,29	16,61	mg/l	
Calcium		490,00	mg/l	24,500	λ	9,410	mmol/I Ca	CO3-	0,15	0,16	44,94	0,20	mg/l	
Magnésium		518,00	mg/l	42,634	SatuRatio	15,34		CO ₂ Total	9,41	4,79	4,87	0,28	mmol/l	
Sodium		5040,00	mg/l	219,130	Туре	Calcifiante		∆ CO₂T	3,53	-1,09	1		mmol/l	
Potassium		120,00	mg/l	3,077	SatuCO2	36,35		Calcium	490,0	446,37	490,0	381,97	mg/l	
Ammonium		0,00	mg/l	0,000	Nem			SatuCO2	572,27	197,98	1,00	1,00		
Fer Divalent		0,00	mg/l	0,000				Saturatio	1,00	1,00	301,30	1,00		
Manganèse		0,00	mg/l	0,000				Туре	Equilibre	Equilibre	Calcifiante	Equilibre		
Chlorure		7728,00	mg/l	217,690	12 1	y 🔜	raiter	Classe d'a	ou eolon l	a réalomenta	tion :	-		
Sulfate		4329,00	mg/l	90,188				Eau Inc	ustante		alcium Cst	\mathbf{N}		
Nitrate		0,00	mg/l	0,000		h	dices	Luc mo	adranco	(ioiun out.	-		
Nitrite		0,00	mg/l	0,000						T				
Fluorure		1,60	mg/l	0,084		h "	NFO.							
O ₂ dissous		8,0	mg/l	165,4	Y P Y.	- PI					Ouan	tité m	aximur	n
Baryum		0,03	mg/l	0,000		T bee	artitude						uAIIIIUI	"
Strontium		2,00	mg/l	0,045				Clas	sse		de Ca	CO_3		
Unitės d'entrėe	0	nverti	sseu	Ind rap	ice ciné port au j	tique : produit	de	régl	emen	taire				

Les résultats sont :

- pH, CO₂libre, TH et conductivité calculés lorsque ces valeurs ne sont pas données dans l'analyse et que le programme peut les calculer, sinon ces valeurs calculées seront comparées avec les valeurs saisies.
- Somme des anions et des cations.
- Écart de balance ionique en %.
- Lambda = (N-P)/2
- Répartition du CO₂total.
- Indice de saturation quantitatif de la cinétique = Ca²⁺ x CO₃²⁻ / K_S['].
- Classification calcocarbonique réglementaire de l'eau: incrustante, agressive, équilibrée.
- Caractéristiques de l'eau à l'équilibre calcocarbonique avec même [Ca²⁺] et après essai au marbre : pH, delta pH, CO₂ ou CaCO₃ échangé, TAC, H₂CO₃, HCO₃⁻, CO₃²⁻, CO₂T, écart de CO₂T, calcium.
- Caractéristiques de l'eau à l'équilibre avec l'atmosphère avec même [Ca²⁺]: pH, delta pH, CO₂ échangé, TAC, H₂CO₃, HCO₃⁻, CO₃²⁻, CO₂T, écart de CO₂T, Saturatio, type.
- Caractéristiques de l'eau (point T) à
 l'équilibre avec CaCO₃ et avec le CO₂
 atmosphérique : pH, TAC, H₂CO₃, HCO₃⁻,
 CO₃²⁻ et CO₂T.
- Les indices et constantes. Les valeurs corrigées du TAC, TA ou CO₂ libre dans le cas où ces titres sont mesurés à un pH de virage fixe et non selon le point d'inflexion.

		Indices et C	onstantes		
Indices calcocarbo		CO2 divers		Formes de	l'ammonium
Saturatio (>= 1)	15,34	CO2 équilibrant	3,73 mmol/	NH4 Tot.	0.00 [NH2CI]
Langelier (>= 0)	1,19	CO2 excédent.	-3,49 mmol/	NH4 lop	0.00
Ryznar (< 7)	5,13	CO2 agressif	mmol/	1	(mg/1 Cl2)
Stiff - Davis	1,308	Constantes d'équ	ilibres	[NH3]	0.00
Indices corrosivité		pKe 13,305	pKe' 13,000	Comparaise	on activités et
Larson (< 0.5)	54,97	pK1 6.294	pK1' 5,989	concentrat	ions
Leroy (0.7< <1.3)	0.08	pK2 10,141	pK2' 9,530	[H+] 4,339	E-5 mmol/1 pHc 7,363
Sola diagona at form		pKs 8,738	pKs' 7,517	(H+) 3,053	E-5 mmol/1 pH 7,515
ionique	Le				
Sels dissous 18	3,573 g/l	Conductivité			P. Partielle du CO2
Force ionique 0,	380 M/I	Cond Colo	10926 1 C à CO	00.%	
Stabler		Cond. Calc.	10320,1 C. a 60,	00 C 13/3/,3	0,01404 Dar(s)
mall		Correction du TA	с		
350 -	Ca	pH de virage 4	.50 pH Equiva	alent 4,315	à 20,00 ℃
	Mg Na	TAC non 2	8.10 °F TAC o	orrigé 28,40	°f Δ = 0,30 °f
250-	■ K	Competion du TA	au du CO2 libro		
	SO4			lont 8 117	÷ 20.00 %
200-1		ph de virage	,20 ph Equiva		a 20,00 C
150-		CO2 libre 1 non comigé	0.00 mg/1 CO2l co	rrigé 8,64	$mg/1 \Delta = -1.36 mg/1$
100-	1	Autres équilibres	(Taux de Saturat	ion)	
50-		BaSO4 1,136	SrSO4 0.155	CaSO4 (Ar	hvdrite) 1.009
₀╻╻╻┟╤╤┛┠┥╤┛┢	ļ	B-CO3 0.000	Sec03 0.023	 	120 (Current) 0.777
Cations Anions		BacO3 0,000	0,02	Ca504,2H	(dypse)
			꾀 🚛 🗖	ndices Ciment	

Fenêtre des indices et constantes donnant:

- Les Indices d'équilibre : Saturatio, Langelier, Ryznar, Stiff & Davis, et de corrosivité : Larson, Leroy.
- Le CO₂ équilibrant, le CO₂ agressif et le CO₂ excédentaire.
- Les valeurs des constantes d'équilibre.
- Le TAC, TA ou CO₂ libre corrigés et le pH du point d'inflexion.
- Les formes de l'ammoniaque.
- La conductivité calculée à 25°C et à la température de l'eau.
- La force ionique et la salinité.
 - la pression partielle du CO₂ équilibrant.
 - Les taux de saturation des sulfates de Ba, Sr et Ca (2 formes allotropiques) et des carbonates de Ba et Sr.

Traitement :

Le logiciel LPLWin6 permet l'étude de l'incidence d'un traitement imposé sur l'équilibre calcocarbonique ou la détermination de la quantité ou volume nécessaire de produit traitant selon sa pureté et sa densité, pour atteindre un état choisi (équilibre, dose imposée, pH imposé, TAC imposé...). Il distingue les Traitements applicables en station des Evolutions vers un état d'équilibre théorique.

Les Traitements suivants sont possibles: mise à l'équilibre CaCO₃, traitement à dose imposée, mise à T.A.C. imposé, mise à pH imposé, décarbonatation adoucissement (à la chaux, soude, électrolytique ou sur résine sodique ou acide), mise à une saturation de CaCO₃ imposée, reminéralisation, mise à l'équilibre avec CO₂ atmosphérique, saturation CO₂ imposée, mélange de plusieurs eaux, déferrisation, ozonisation, nitrification biologique.

A chaque étape il est possible d'ajouter de nouveaux traitements (variantes) permettant de **comparer** en parallèle les caractéristiques des eaux produites par des réactifs ou des traitements différents.

Après chaque étape de traitement, le programme donne les renseignements suivants :

type de traitement, produit de traitement, dose utilisée selon sa pureté et sa densité (si liquide) saisies,
tous les paramètres de l'eau dont : température, lambda, force ionique, calcium, type d'eau : incrustant ou agressif ou équilibré, TAC, pH, indice de saturation, pH à l'équilibre, CO₂ total, delta, CO₂ total à l'équilibre, classification calcocarbonique selon réglementation, indices et constantes, incertitudes sur les résultats pour la première étape de traitement (étape 0 et 1).

Les réactifs intégrés sont:

NaOH, Na₂CO₃, Ca(OH)₂, CO₂, H₂SO₄, HCl, FeCl₃, Al₂(SO₄)₃ nH₂O, CaCO₃ nMgO, CaCO₃ nMgCO₃, CaSO₄, CaCl₂, NaHCO₃, Cl₂, NaClO, Ca(ClO)₂, saumure électrolysée, O₃, CO₂ + Ca(OH)₂, CO₂ + CaCO₃ nMgO, CO₂ + CaCO₃ nMgCO₃, adoucissement résine chaux soude électrolytique, chlorure (PAC) et sulfate (PAS) de polyaluminium (ou produits commerciaux).

Les **Evolutions** pouvant être simulées sont les suivantes : variation de la **température**, équilibre à calcium constant ou au marbre, équilibre avec CaCO₃ ET CaSO₄, concentration (évaporation), réduction chimique des nitrates.

On passe de la liste des traitements à celle des évolutions en choisissant le type de simulation.

ARBORESCENCE :

Le logiciel **LPLWin6** pouvant gérer un grand nombre d'eaux et d'étapes de traitements, il devient rapidement difficile de rechercher une étape particulière. Mais grâce à la fenêtre Arborescence cela devient très aisé :

- Elle visualise l'ensemble des étapes avec leurs filiations (une étape -> traitement -> nouvelle étape).
- Elle rappelle l'identification du traitement ou de l'évolution avec les valeurs cibles et le cas échéant les doses calculées.
- Elle permet de visualiser simplement la filière et ses variantes éventuelles.
- Elle est **interactive** : l'étape active apparaît en surbrillance ; pour sélectionner une autre étape il suffit de cliquer sur l'étape choisie.

programme permet de Iе calculer par la méthode Monte Carlo (Depuis la V5) l'incertitude sur les résultats de LPLWin (caractéristiques de l'eau, classification selon la réalementation. dose de traitement) selon l'incertitude sur les paramètres d'analyse saisis pour l'eau initiale et sur la première étape de traitement. Les traitements sur lesquels on peut effectuer ce calcul sont: mise à saturation fixée, pH imposé. TAC imposé, dose imposée et décarbonatation à la chaux ou à la soude

INCERTITUDE :

🜔 Incertitudes su	r les résulta	ats d	e l'Eau 2 l	Etape 0								[×
Choix des Para Elém. fondam Seuls	amètres nentaux	(⊖ <mark>E</mark> lém. et Car	Fondamentaux actérist. divalents	Tous les é Majeurs	ilém.		lombre l'itératio 2000	ns					
Données entré	es (étape	0)			Valeurs cal	culées po	ur F	ėtape O			Equilibres			
Température	12,80	±	2,00	°C	Lambda	0,457	±	0,05	mmol/l		Calciu	m Co	nstant	
pН		±			CO2 total	4,089	±	0,12	mmol/l	pH d'équilibre	7,51	±	0,05	1
TAC	19,10	±	0,20	٩	Saturatio	1,185	±	0,60		∆ CO2T	0,05	±	0,12	mmol/
CO2 libre	11,26	±	5,00	mg/l							Mari	оге		
ТА		±		٩						pH d'équilibre	7,52	±	0,05	
Calcium	95,10	±	2,00	mg/l						∆ CO2T	-0,03	±	80,0	mmol/
Magnésium	4,30	±	1,00	mg/l						∆ CaCO3	-3,46	±	8,28	mg/l
Sulfate	27,00	±	4,00	mg/l										
Sodium	11,60	±	4,00	mg/l	Diagnostic	%) Etape	0							
Potassium	2,80	±	1,00	mg/l	Agressive	: 20,2			Equilibre	: 17,1	Calci	fiante	62,8	
Chlorure	33,57	±	2,00	mg/l	,									
Nitrate	28,00	±	2,00	mg/l	Sauvegard Modificatio	e des ns			F		Calcule	r	Ferm	er
Diagnostic (%) Agressive :	selon Ré 0,0	glerr	ientation Légèrei Agressi	n (Etape 0) ment ive :	Equilibre	87,6		Légè Incru	rement Istante :	10,1	Incrust	ante	: 2,4	

Pour en savoir plus sur cette méthode, voir la **publication dans le Journal Européen d'Hydrologie** vol.42 (2011) p.71–89 : <u>http://dx.doi.org/10.1051/wqual/2012001</u>

Graphique :

Le logiciel **LPLWin6** permet de tracer le graphique $CO_2t = f(Ca^{2+})$ de chaque étape, avec impression ou recopie vers le **presse-papier**. Les courbes et points affichables sont : courbe d'équilibre, courbe 40Ks (précipitation spontanée), courbe d'équilibre avec le CO_2 atmosphérique, droite de pente 2, point figuratif de l'eau. Le programme permet d'afficher les courbes de quatre eaux ou étapes différentes simultanément sur le même graphique. Ces courbes n'ont jamais été si précises à l'écran.

Les boutons d'options de visualisation peuvent faire apparaître :

- les coordonnées du point M figuratif d'une eau, celles des équilibres à Ca constant et au marbre,
- le nuage de points du calcul d'incertitude,
- l'évolution de l'eau entre deux étapes, le pH le long de la courbe d'équilibre,
- les droites de pH ainsi qu'une droite de pH pour une valeur choisie, les courbes iso-Saturatio,
- le point commun aux 2 courbes d'équilibres avec CaCO3 et avec le CO2 atmosphérique (point T),
- la colorisation du graphique en fonction du Saturatio ou du pH

Le zoom dynamique permet un **grossissement jusqu'à x 100**. Un clic sur le graphique mémorise les **coordonnées du curseur** de la souris et les caractéristiques de l'eau pointée sont calculées en cliquant sur le bouton « Calcul de l'eau pointée ».

Exemples d'options de visualisation et de puissance du zoom

FASTREPORT:

Le logiciel LPLWin6 permet de réaliser un rapport de calcul **personnalisé** grâce au logiciel « *FastReport* » qui est **inclus dans LPLWin6**, avec les manuels de programmation et d'utilisation.

Ce logiciel permet :

- De créer votre propre modèle de rapport.
- D'utiliser directement le modèle proposé par LPLWin6.
- De modifier ce modèle selon votre choix.

Interface de création de rapport

Interface de modification du modèle préparé par LPLWin6

Valeur Valeurs 12,80 523,1 7,29 255,45 21,01 95,1 4,33 11,6 2,8 33,5 27,0 35,02 35,02 1,9 1,9 5,685 5,685	Eau 01 s Calculée Unités °C µS/om Ppm ppm mg/i mg/i mg/i mg/i mg/i mg/i mg/i mg/	Etape 1 / 8 me/l 5,11 3,612 0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565 18,1	Eau (Nitrification Eq. Ca (Valeurs 7,54 180,6 95,1	brute 202 Bio (Jane I constant Unités ppm mg/	1/02/18 njeotion d'air Eq. M Valeurs 7,48 195,66 101,13	0 (02 = 7,17 arbre Unités ppm mg/l	moili) Eq. CO Valeurs 8,66 180,6	2 Gaz Unités ppm mg/
Valeur Valeurs 12,80 523,1 7,29 255,45 21,01 95,1 4,3 311,6 2,8 33,5 27,0 35,02 1,9 1,9 5,685 5,685	Esu 01 s Calculée: Unités C µS/cm Ppm Ppm mg/i mg/i mg/i mg/i mg/i mg/i mg/i mg/	Etape 1 8 me/l 5,11 3,612 0,477 4,755 4,3 0,504 0,072 0,072 0,944 0,563 0,565	Nitrification Eq. Ca (Valeurs 7,54 180,6 95,1	Bio (Jans I Constant Unités ppm mg/	njeotion d'airne Eq. M Valeurs 7,48 195,66 101,13	ppm mg/l	mo(I)) Eq. CO Valeurs 8,66 180,6 95,1	2 Gaz Unités ppm mg/
Valeur Valeurs Valeurs 12,80 523,1 7,29 255,45 255,45 255,45 25,60 21,01 95,1 4,3 11,6 2,8 2,8 27,0 33,5 27,0 35,02 1,9 1,9 5,685 5,685	s Catculées Unités Unités (C) ppm ppm ppm ppm mg/i m	8 me/l 5,11 3,612 0,475 4,3 0,504 0,072 0,944 0,563 0,565 18,1	Eq. Ca (Valeurs 7,54 180,6 95,1	constant Unités ppm mg/	Eq. M Valeurs 7,48 195,66 101,13	Unités Unités ppm mg/l	Eq. CO Valeurs 8,66 180,6 95,1	2 Gaz Unités ppm mg/
Valeura 12,80 523,11 7,29 255,45 180,6 21,01 95,11 4,3 11,6 2,8 33,5 27,0 35,02 1,9 1,9 1,9 5,685 5,683 5,683	Unités "C µS/cm Ppm Ppm mg/i m	me/l 5,11 3,612 0,477 4,75 4,3 0,504 0,072 0,944 0,563 0,565 18,1	Valeurs 7,54 180,6 95,1	Unités ppm mg/	Valeurs 7,48 195,66 101,13	Unités ppm mg/l	Valeurs 8,66 180,6 95,1	Unités ppm mg/
12,80 523,11 7,29 255,45 21,01 95,11 4,33 11,6 2,8 33,6 27,0 35,02 5,685 5,685	•C µS/cm ppm ppm mg/i mg/	5,11 3,612 0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565	7,54	ppm mg/	7,48	ppm mg/l	8,66 180,6 95,1	ppm mg/
523,1 7,29 255,45 21,01 95,1 95,1 4,3 11,6 2,8 33,5 27,0 35,02 35,02 1,9 1,9 5,685 5,683	µS/cm Ppm ppm ppm ppm mg/l m	5,11 3,612 0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565	7,54	ppm mg/	7,48	ppm mg/i	8,66 180,6 95,1	ppm mg/
7,29 255,45 180,6 21,01 95,1 4,3 11,6 2,8 33,5 27,0 35,02 1,9 1,9 5,685 5,683	ppm ppm mg/i mg/i mg/i mg/i mg/i mg/i mg/i mg/	5,11 3,612 0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565	7,54	ppm mg/	195,66	ppm mg/l	8,00 180,6 95,1	ppm mg/
255,45 180,6 21,01 95,1 4,3 11,6 2,8 33,5 27,0 35,02 1,9 5,685 5,683	ppm ppm mg/i mg/i mg/i mg/i mg/i mg/i mg/i mg/	5,11 3,612 0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565 18,1	95,1	ppm mg/	195,66	ppm mg/l	180,6 95,1	ppm mg/
180.6 21,01 95,1 4,3 11,6 2,8 33,5 27,0 35,02 1,9 1,9 5,685 5,685	ppm ppm mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	3,612 0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565 18,1	95,1	ppm mg/	195,66	ppm mg/l	18D,6 95,1	ppm mg/
10,0 21,01 95,1 4,3 11,6 2,8 33,5 27,0 35,02 1,9 1,9 5,685 5,685	mg/i mg/i mg/i mg/i mg/i mg/i mg/i mg/i	0,477 4,755 4,3 0,504 0,072 0,944 0,563 0,565	95,1	mgi	101,13	mg/l	95,1	mg/
21,0 95,1 4,3 11,6 2,8 33,5 27,0 35,02 1,9 1,9 5,685 5,685	mg/i mg/i mg/i mg/i mg/i mg/i mg/i mg/i	0,944 0,563 0,565 0,944 0,563 0,565	95,1	mgi	101,13	mg/l	95,1	mg/
4,3 11,6 2,8 33,5 27,0 35,02 1,9 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	4,3 0,504 0,072 0,944 0,563 0,565						
11,6 2,8 33,5 27,0 35,02 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,504 0,072 0,944 0,563 0,565 18,1						
2,8 33,5 27,0 35,02 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,072 0,944 0,563 0,565 18,1						
33,5 27,0 35,02 1,9 5,685 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,944 0,563 0,565 18,1						
33,5 27,0 35,02 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,944 0,563 0,565 18,1						
33,5 27,0 35,02 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,944 0,563 0,565 18,1						
33,5 27,0 35,02 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,944 0,563 0,565 18,1						
27,0 35,02 1,9 5,685 5,685	mg/l mg/l mg/l mg/l mg/l mg/l	0,563 0,565 18,1						
35,02 1,9 5,685 5,683	mg/l mg/l mg/l mg/l mg/l	0,565						
1,9 5,685 5,683	mg/l mg/l mg/l mg/l	18,1						
1,9 5,685 5,683	mg/l mg/l mg/l	18,1			<u> </u>			
5,685	mg/l mg/l	10,1						
5,685 5,683	mg/l							
5,685 5,683								
5,683	me/l							
	me/l							
0,04	%							
0,572								
0,56							12,81	
Agressive			Equilbre		Equilibre		Caldifiante	
24,74			13,88		17,03			
			0,25		0,19		1,38	
					15,066	mg/l		
21,15	mg/I CO ₂		11,86	mg/I CO ₂	14,56	mg/I CO ₂	0,85	mg/I CO;
219,93	mg/l		219,62	mg/l	235,97	mg/l	211,21	mg/
0,19	mg/l		0,34	mg/l	0,33	mg/l	4,42	mg/
4,09	mmol/l		3,88	mmol/	4,24	mmol/l	3,56	mmol/
			-0,21	mmol/	0,15	mmol/l	-0,53	mmol/
							-20,3	mg/
	T		Eau 01 E	tape 1 (Nitri	floation Bio (ans injectio	n d'air) (O2 =	7,17 mg/l))
réglemen	tation			Eau légi	ère, agressi	ve (CI. 2) / 0	Calcium Cat.	
-	Eau 01 Eta	pe 1 (Nitr	ification Blo	(Sanc Inleo	tion d'air) (O	2 = 7.17 ma/	0)	
Ices			Equilibre a	vec CaCO	et CO ₂		Autres	Equilibres
V	/aleur	Nor	n / Paramé	tre	Valeur	Nom	/ Paramétre	
	0,56	pH			8,24	BaCO ₅ (Withérite)	
	-0,25	Calciu	m (mg/l)		48,72	SrCO, (S	trontianite)	-
	-	CO ₂ To	ital : (mmol	/ŋ	1,30	BaSO ₄ (Baryte)	<u> </u>
	0,42	TAC :	(ppm)	<u> </u>	64,64	SrSO, (C	(elestine)	
	0,71				-	CaSO, (Anhydrite)	
	7,79	1				CaSO4	2 H ₂ O (Gyps	e)
	24,74 21,15 21,15 21,93 0,19 4,09 réglemen	24,74 21,15 mg/l CO2 219,93 mg/l 0,19 mg/l 4,09 mmol/l réglementation Eau 01 Eta C68 Valeur 0,55 -0,25 0,42 0,71 7,79 7,79	Expresence Expresence 21,15 mg/l CO2 219,93 mg/l 0,19 mg/l 4,09 mmol/l réglementation Eau 01 Etape 1 (Nith CO8 Valeur Noi 0,55 PH -0,25 Calclu 0,42 TAC : 0,71 7,79	Common Procession Common Procession 24,74 13,88 21,15 mg/l CO ₂ 21,15 mg/l CO ₂ 21,15 mg/l 219,62 0,19 mg/l 0,34 4,09 mmol/l 3,88 -0,21 -0,21 Eau 01 Elspe 1 (Nitrifaction Bio Cose Valeur Norm / Paramé 0,56 PH -0,25 Calclum (mg/l) 0,42 TAC : (ppm) 0,71 7,79	Equilation Equilation 24,74 13,88 21,15 mgil CO ₂ 21,15 mgil CO ₂ 219,93 mgil 0,19 mgil 0,24 -0,21 movil 3,88 0,19 mgil 0,19 mgil -0,21 mmovil 3,88 mmovil -0,21 mmovil Eau 01 Etape 1 (Nitrification Bio (Bans Injee Ces Equilibre avec CaCO Valeur Nom / Paramétre 0,56 PH -0,25 Calcium (mgil) 0,42 TAC : (ppm) 0,71 7,79	Spressive Equilible Equilible 24,74 13,88 17,03 0,25 0,19 15,066 21,15 mgil CO2 11,86 mgil CO2 21,933 mgil 219,62 mgil 235,97 0,19 mgil 0,34 mgil 0,34 4,09 mmol/l 3,88 mmol/l 0,31 4,09 mmol/l 3,88 mmol/l 0,31 eu -0,21 mmol/l 0,15 Eau 01 Etape 1 (Nitrification Bio (tans injection s'air) (to Ces Equilibre avec CaCO ₃ et CO ₂ Valeur Non Paramètre Valeur 0,56 pH 8,24 -0,25 Calcium (mg/l) 48,72 CO ₂ Tota1 : (mmol/l) 1,30 0,42 TAC : (ppm) 64,64 0,71 7,79 54,64	Signation Explanation Explanation 24,74 13,88 17,03 24,74 13,88 17,03 0,25 0,19 15,066 21,15 mgil CO ₂ 11,86 mgil CO ₂ 219,93 mgil 219,62 mgil 235,97 0,19 mgil 0,34 mgil 0,33 mgil 4,09 mmol/l 3,88 mmol/l 4,24 mmol/l 4,09 mmol/l -0,21 mmol/l 0,15 mmol/l 6 Eau 01 Etape 1 (Nitrinostion Bio (Bane Injection fair) (02 = 7,17 mg/l 0.15 mmol/l 10 Eau 01 Etape 1 (Nitrinostion Bio (Bane Injection fair) (02 = 7,17 mg/l 0.56 PH 0,56 pH 8,24 BaCO ₂ (1 0.25 Calcium (mg/l) 48,72 SrCO ₃ (2 0,56 pH 6,24 BaCO ₂ (1 0,71 Co ₃ TAC (ppm) 64,64 SrSO ₄ (2 0,71 CO ₃ TAC (ppm) 64,64 SrSO ₄ (2 0.7,79 CaSO ₄ (2 <td>Equilate Equilate Equilate Equilate Equilate 24,74 13,88 17,03 1,38 17,03 21,15 mgil CO2 11,86 mgil CO2 1,38 21,15 mgil CO2 11,86 mgil CO2 0,25 219,93 mgil 219,62 mgil 235,97 mgil 211.21 0,19 mgil 0,34 mgil 0,33 mgil 211.21 0,19 mgil 0,34 mgil 0,15 mmolil 3,56 4.09 mmolil 3,88 mmolil 0,15 mmolil -20,3 réglementation Eau 91 Etape 1 (Nitritoation Bio (3ans injection d'air) (02 = 7,17 mgil)) -20,3 Eau 91 Etape 1 (Nitritoation Bio (4ans injection d'air) (02 = 7,17 mgil)) Eau 91 Etape 1 (Nitritoation Bio (3ans injection d'air) (02 = 7,17 mgil)) Ces Equilibre avec CaCO, et Co_0 Autree 0,55 pH 8,24 BaCO, (Witherite) -0,25 Calcum (mgil) 45,72 srCO, (Strontianthe) 0,42 TA</td>	Equilate Equilate Equilate Equilate Equilate 24,74 13,88 17,03 1,38 17,03 21,15 mgil CO2 11,86 mgil CO2 1,38 21,15 mgil CO2 11,86 mgil CO2 0,25 219,93 mgil 219,62 mgil 235,97 mgil 211.21 0,19 mgil 0,34 mgil 0,33 mgil 211.21 0,19 mgil 0,34 mgil 0,15 mmolil 3,56 4.09 mmolil 3,88 mmolil 0,15 mmolil -20,3 réglementation Eau 91 Etape 1 (Nitritoation Bio (3ans injection d'air) (02 = 7,17 mgil)) -20,3 Eau 91 Etape 1 (Nitritoation Bio (4ans injection d'air) (02 = 7,17 mgil)) Eau 91 Etape 1 (Nitritoation Bio (3ans injection d'air) (02 = 7,17 mgil)) Ces Equilibre avec CaCO, et Co_0 Autree 0,55 pH 8,24 BaCO, (Witherite) -0,25 Calcum (mgil) 45,72 srCO, (Strontianthe) 0,42 TA

Le logiciel **FastReport** permet de concevoir, puis **d'imprimer** directement le rapport ou de **l'exporter** vers un autre logiciel tel que MS Word ou MS Excel.

Il construit **automatiquement** le rapport d'une étape ou d'une **eau (étape 0) avec l'ensemble des étapes** de traitement ou encore le rapport de l'ensemble des eaux et étapes présentes à l'écran.

LES OPTIONS supplémentaires payantes

Deux options sont disponibles sur demande. Elles peuvent intéresser particulièrement certains utilisateurs tels que les laboratoires d'analyses et les bureaux d'études ou cabinets de conseils.

Option 1 : automatisation

fichier importé.

dans un fichier « .LPL6 ». 🔕 Calcul automatique à partir d'un fichier Excel 🛛

Rappel des paramètres d'importation

Nom du fichier source

N° L/C Paramètres

N° L/C Résultats

Identifiant

N° L/C de l'identifiant principal des échantillo

Cette option permet d'effectuer à la chaîne semiautomatiquement les calculs d'équilibre calcocarbonique à partir des données analytiques de différentes eaux, contenues dans une même feuille d'un fichier Excel. LPLWin6 peut traiter jusqu'à 1 000 échantillons en un seul clic.

Il suffit renseigner les noms des paramètres à importer, préciser la structure de la feuille et définir les paramètres à exporter, dans les options : LPLWin6 importe les données, effectue les calculs puis exporte les résultats vers une feuille Excel (qui peut être ou non la feuille et le fichier initial d'importation).

LPLWin6 informe du déroulement des calculs et alerte l'opérateur s'il manque des données pour un échantillon.

Les données nécessaires sont : la Température et le pH (ou le TA ou le CO₂ libre) mesurés sur place, Ca²⁺, Mg²⁺, Na⁺, K⁺, TAC, Cl⁻,SO₄²⁻ et NO₃²⁻, ainsi que leurs unités.

Outre l'identifiant des échantillons (Code échantillon), LPLWin6 peut reconnaître aussi un identifiant secondaire (Code dossier, client, ...) pour permettre

Cette option fournit les valeurs des divers indices d'agressivité de l'eau vis-à-vis des matériaux à base de ciment (amiante-ciment, béton, mortier de ciment). La fenêtre d'indices « ciment » fournit :

- La valeur de l'Aggressivity Index de l'AWWA.
- La classe d'agressivité définie selon la norme NF EN 206-1 ainsi que la valeur du paramètre fixant la classe.
- Le Delta [Ca] et les coordonnées du point Q -(indices LPL) décrits ci-dessous.

La norme NF EN 206-1 n'étant pas adaptée aux ouvrages des installations industrielles de traitement d'eau, LPLWin6 propose deux critères d'agressivité plus représentatifs :

- Le Delta [Ca], défini dans l'ouvrage de L. Legrand & P. Leroy (*), correspond au bilan calcium du matériau mis en contact avec l'eau et qui définit la vitesse d'attaque (dégradation lente si positif, dégradation rapide si négatif).
- Le point Q est le point commun à la courbe d'équilibre et à celle qui est définie par Delta [Ca] =0. Ce point constitue la limite au-dessous de laquelle l'eau ne contient pas assez de CMT ou de Ca pour protéger même temporairement le matériau, la dégradation est alors très rapide.

Le graphique permet, pour chacun des indices, de visualiser les domaines d'agressivité ou de protection.

de séparer les échantillons entre eux au sein du

Enfin LPLWin6 peut, si nécessaire, enregister

simultanément les calculs de chaque échantillon

Nom de fichie variable

Libellé de l'identifiant

Code Echantillon

N° L/C de l'identifiant

donnees CALCO type5 et 6.xl:

Nom de la feuille Type6(unit avant res)

1 🛊 1 🖨

1 🜩

Rappel des paramètres d'exportation

donnees CALCO type5

Nouveau Fichier Excel

re du Fichier Cible

uments Professionnels\CIFEC\

Fichier Excel Cible

Nom du Fichier Cible

Nom de la Feuille Cible

Type6(unit avant res)

Nouvelle Feuille Excel

(*) voir www.lplwin.fr

Option 2 : indice / ciments

LES FORMATIONS CONTINUES

EQUILIBRE CALCO-CARBONIQUE MATERIAUX, CORROSION et Logiciel LPLWIN

Public concerné par les 4 thèmes :

Chimiste confronté à l'équilibre calco-carbonique, à l'agressivité et à l'entartrage par les eaux potables, industrielles, chauffage, climatisation, usées... Traiteur d'eau : exploitant et concepteur d'installation. Ingénieur conseil, bureau d'études... **Public concerné par les thèmes 1 et 2:** Laboratoire d'analyse hydrologique.

par les développeurs du logiciel Soit au siègede CIFEC ou en vidéo via Teams voir <u>www.cifec.fr</u> pour les dates et la tarification

Thème 1 – THEORIE, LOGICIEL LPLWIN (1 jour) par M. Luc DERREUMAUX :

Pré requis : notion de chimie analytique **Objectif** : **comprendre l'équilibre Calco-Carbonique et initiation à LPLWin.** Présentation et résolution de l'équilibre calco-carbonique par la méthode LEGRAND - POIRIER - LEROY, Graphique CO₂t / Ca²⁺, Caractérisation réglementaire de l'eau, Utilisation du logiciel LPLWin.

THEME 2 - ANALYSE, EXERCICES LPLWIN (1 jour) par Mrs Pierre LEROY & Luc DERREUMAUX :

Pré requis : connaissance du thème 1

Objectif : comprendre les données nécessaires et bien utiliser LPLWin. Initiation aux traitements. Analyse de l'eau et précision, précautions et bonnes pratiques. Précipitation spontanée, nucléation et inhibition. Manipulation du logiciel, Exercice sur LPLWin : caractérisation et graphique.

THEME 3 – TRAITEMENT EXERCICES LPLWIN (1 jour) par Mrs Pierre LEROY & Luc DERREUMAUX :

Pré requis : connaissance des thèmes 1 et 2 **Objectif : simuler les traitements avec LPLWin.** LPLWin : les réactifs, traitements, exercices et études de cas, mise en œuvre sur LPLWin.

THEME 4 - CORROSION - MATERIAUX (1 jour) par M. Pierre LEROY :

Pré requis : connaissance des thèmes 1 et 2.

Objectif : comprendre les risques de dégradation et les prévenir. Dégradation ciment. Corrosion dans l'eau: métaux ferreux, acier, galva, inox, cuivre, aluminium. Théories et conséquences.

CIFEC est le concepteur et éditeur du logiciel LPLWin de Calcul de l'équilibre calco-carbonique.

CIFEC est l'éditeur de l'ouvrage de P.LEROY et L.DERREUMAUX (en anglais) : « INTERNAL SCALING and CORROSION in WATER SUPPLY SYSTEMS ».

CIFEC est l'éditeur de l'ouvrage de L.LEGRAND et P.LEROY (en français) : « Prévention de la corrosion et de l'entartrage dans les réseaux de distribution d'eau ».

Plus de renseignements sur : http://www.lplwin.fr

3) VALIDATION de l'installation

Après installation du logiciel LPLWIN, merci de le valider en comparant les résultats obtenus.

Origine : ouvrage « Prévention de la corrosion et de l'entartrage... » L.Legrand et P.Leroy. Trois paramètres réglables dans LPLWin impact le résultat des calculs du logiciel : Suite à l'augmentation récente du **CO**₂ **atmosphérique**, la concentration par défaut du CO₂ atmosphérique est de 0,00040b dans LPLWin 6, contrairement à l'ouvrage et aux versions précédentes 4 et 5 de LPLWin qui utilisaient une concentration de 0,00030b.

La méthode utilisée pour le **dosage du TAC, ou du TA**, peut avoir un impact important sur les résultats des calculs de l'équilibre calco-carbonique. Il faut donc savoir quelle méthode de dosage du TAC, ou TA, a été utilisée lors de la mesure.

Il existe plusieurs formes de cristallisation du CaCO3, avec des **constantes d'équilibre Ks** différentes. En eau potable, par défaut on utilise une forme allotropique moyenne (générale). Les 3 analyses suivantes permettent de vérifier la prise en compte du paramétrage et le bon fonctionnement du programme. Lors des saisies, vous pouvez **appuyer sur [F1]** pour en savoir plus.

3-1) Avec option de calcul à : MODE de DOSAGE du TAC et du TA : au point d'inflexion.

3-1-1) Analyse 1 (p180-181): cliquer dans le menu Fichier/Nouveau fichier :

a) Cliquer sur le bouton « Dosage du TAC » et vérifier que le choix « Au point d'inflexion » est sélectionné (voir ci-dessous). Valider : le bouton passe au vert.

- b) Cliquer sur le bouton « Dosage du TA/CO2I » et vérifier que le « pH de virage » indiqué est de 8.20, que la case « T.de l'eau » est cochée, que la case « Dosage du CO2 par Sonde IR » est décochée. Valider : le bouton passe de rouge à orange.
- c) Cliquer sur le bouton « Valeur de Ks » et vérifier que le choix « Général » est sélectionné (voir ci-dessus). Valider : de rouge le bouton passe à bleu clair.
- d) Cliquer sur la cellule de la valeur de la température et saisir les nombres (ci-dessous) de la colonne valeurs, puis cliquer sur « Calculer » :

LPLWin 6.01.15	s : 20210	810	Eau 01	Etape 0	
Daramàtra a	Valoura	Unitán	me/l	1	
Tompératuro	16 00	ornes	men		
Conductivité	10.20	-C			
	7.00	µs/cm			
рп	7.60	~			
		°T			
TA (pH 8,20)		4			
TAC (")	16.43	9			
CO ₂ libre (pH 8,20)		mg/l			
Calcium	97.20	mg/l			
Magnésium	4.13	mg/l			
Sodium	7.98	mg/l			
Potassium	3.32	mg/l			
Ammonium		µg/l		News	
Fer Divalent		µg/l		INOM :	
Manganèse		µg/l			
Chlorure	28.01	mg/l		Dosage du TAC	Calculer
Sulfate	62.50	mg/l			
Nitrate	14.94	mg/l		TA/CO2I	
Nitrite		µg/l			
Fluorure		µg/l		Valeur de Ks	
O₂ dissous		mg/l			
Baryum		µg/l			
Strontium		µg/l			

e) Résultat analyse 1 (page 180-181) :

Comparer les résultats des colonnes Résultats, et Equilibre, pour validation (les résultats en gras sont les plus importants). En cas d'écart voir 3-3) Résultat

Paramètres		Valeurs	Unités	me/l	Paramètres	Résultats	Unités	Equilibre	Ca Cst.	Marbre	Atmosphère	Point T	Unités
Température		16,20	°C	16.2	Σ Cations	5,632	me/l	pH	7,49	7,51	8,64	8,19	
Conductivité	с	566,3	µS/cm	464,2	ΣAnions	5,618	me/l	∆pH	-0,11	-0,09	1,04		
рH		7,60			Balance	-0,25	%	∆ CaCO ₃		-4,238			mg/l
тн	с	26,00	٩f	5,200	H,CO;	12,29	mg/IH2CO3*		2,59		-7,95		mg/l
TA (pH 8,20)			٩f		HCO;	199,62	mg/l	TAC	16,43	16,01	16,43	5,55	٩f
TAC (*)		16,43	٩f	3,286	CO3-	0,40	mg/l	H,CO;	15,85	14,83	1,08	1,08	mg/I H2CO3
CO ₂ Libre	с	8,40	mg/l	0,191	CO ₂ Total	3,477	mmol/l	HCO;	199,81	194,63	191,82	67,77	mg/l
Calcium		97,20	mg/l	4,860	λ	0,787	mmol/l Ca	CO3-	0,31	0,31	4,17	0,50	mg/l
Magnésium		4,13	mg/l	0,340	SatuRatio	1,29		CO ₂ Total	3,536	3,435	3,232	1,119	mmol/l
Sodium		7,98	mg/l	0,347	Туре	Calcifiante		∆ CO ₂ T	0,059	-0,042	-0,246		mmol/l
Potassium		3,32	mg/l	0,085	SatuCO2	11,34		Calcium	97,20	95,50	97,20	53,68	mg/l
Ammonium			µg/l					SatuCO2	14,62	13,68	1,00	1,00	
Fer Divalent			µg/l		Nom :			Saturatio	1,00	1,00	13,45	1,00	
Manganèse			µg/l					Туре	Equilibre	Equilibre	Calcifiante	Equilibre	
Chlorure		28,01	mg/l	0,789	\mathcal{P}	9	Traiter						
Sulfate		62,50	mg/l	1,302				Classe d'e	au selon la	a réglemen	tation :		
Nitrate		14,94	mg/l	0,241	_ <u>_</u>		Indices		equilibre	(u. 1)7	Calcium Ust.		
Nitrite			µg/l										
Fluorure			µg/l		┟╘╌┥║╒╴								
O₂dissous	c	9,9	mg/l	100		abe P							
Baryum			µg/l			<u>9/1</u>							
Strontium			µg/l		•		Certitude						

Vous pouvez enregistrer l'analyse et les résultats en cliquant sur Fichier/Enregistrer

3-1-2) Analyse 2 (page 183) : cliquer dans le menu Fichier/Nouveau fichier :

- a) Cliquer sur le bouton « Dosage du TAC » et vérifier que le choix « Au point d'inflexion » est séléctionné. Valider.
- b) Saisir les nombres (ci-dessous) de la colonne valeurs, et cliquer sur « Calculer » :

Paramètres	Valeurs	Unités		
Température	17	°C		
Conductivité		µS/cm		
pН	7.07			
тн		٩f		
ТА		٩f		
TAC (*)	31.185	٩f		
CO, libre		mg/l		
Calcium	104	mg/l		
Magnésium	16.597	mg/l		
Sodium	19.412	mg/l		
Potassium	8.58	mg/l		
Ammonium		mg/l	News	
Fer Divalent		mg/l	Nom :	
Manganèse		mg/l	Dosage du	
Chlorure	30.814	mg/l	TAC	Calculer
Sulfate	26.016	mg/l		
Nitrate	0	mg/l	TA/CO2I	
Nitrite		mg/l		
Fluorure		mg/l	Valeur de Ks	
O _z dissous		mg/l		
Baryum		mg/l		
Strontium		mg/l		

c) Résultat analyse 2 (page 183) : Comparer les résultats des colonnes Résultats.

Comparer les résultats des colonnes Résultats, et Equilibre, pour validation (les résultats en gras sont les plus importants). En cas d'écart voir 3-3) Résultat

Paramètres		Valeurs	Unités	me/l	Paramètres	Résultats	Unités	Equilibre	Ca Cst.	Marbre	Atmosphère	Point T	Unités
Température		17,00	°C		Σ Cations	7,630	me/l	pН	7,19	7,14	8,90	8,42	
Conductivité	с	709,7	µS/cm	593,1	ΣAnions	7,647	me/I	Δ pH	0,12	0,07	1,83		
pН		7,07			Balance	-0,22	%	∆ CaCO ₃		14,988			mg/l
тн	с	32,83	٩f	6,566	H,CO;	77,40	mg/IH2CO3	∆ CO₂	-12,89		-54,18		mg/l
ТА			٩f		HCO ₃	379,98	mg/l	TAC	31,19	32,68	31,19	9,48	٥f
TAC (*)		31,19	٩f	6,237	CO3-	0,24	mg/l	H,CO;	59,31	68,17	1,06	1,06	mg/IH2CO3
CO, libre	с	54,72	mg/l	1,244	CO ₂ Total	7,48	mmol/l	HCO3	379,83	398,14	350,35	114,55	mg/l
Calcium		104,00	mg/l	5,200	λ	-0,519	mmol/l Ca	CO3-	0,31	0,29	14,67	1,46	mg/l
Magnésium		16,60	mg/l	1,366	SatuRatio	0,77		CO ₂ Total	7,19	7,63	6	1,89	mmol/l
Sodium		19,41	mg/l	0,844	Туре	Agressive		∆ CO ₂ T	-0,29	0,15	-1,48		mmol/l
Potassium		8,58	mg/l	0,220	SatuCO2	73,13		Calcium	104,0	110,0	104,0	17,18	mg/l
Ammonium			mg/l			·		SatuCO2	56,04	64,41	1,00	1,00	
Fer Divalent			mg/l		Nom :			Saturatio	1,00	1,00	47,40	1,00	
Manganèse			mg/l					Туре	Equilibre	Equilibre	Calcifiante	Equilibre	
Chlorure		30,81	mg/l	0,868	\mathcal{P}	$\mathbf{\mathfrak{G}}$	Traiter						
Sulfate		26,02	mg/l	0,542				Classe d'	eau selon l	a réglemer	ntation :		
Nitrate		0,00	mg/l	0,000	<u>è</u> li	2	Indices	Eau à l'	équilibre	(a. 1) /	Calcium Cs	t.	
Nitrite			mg/l										
Fluorure			mg/l										
O <u>,</u> dissous	с	9,5	mg/l	100	Land L	abe 1							
Baryum			mg/l			i ⁵ / /r							
Strontium			mg/l			fri L	icer ti tude						

Vous pouvez enregistrer l'analyse et les résultats en cliquant sur Fichier/Enregistrer

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4973f du 15/12/2021 P.15/24

3-2) Avec option de calcul à : MODE de DOSAGE du TAC : à pH fixé.

3-2-1) Analyse 3 (page 188) : cliquer dans le menu Fichier/Nouveau fichier :

a) Cliquer sur le bouton « Dosage du TAC » et choisir « A pH fixé » (voir ci-dessous).

Paramètres	Valeurs	Unités	Dosage du TAC
Température		°C	
Conductivité		µS/cm	Au point d'inflexion
pН			A pH fixé
тн		٩f	
ТА		٩f	T do monume app 20
TAC (*)		٩f	T de mesure 20,0 C
CO, libre		mg/l	
Calcium		mg/l	Valider
Magnésium		mg/l	
Sodium		mg/l	
Potassium		mg/l	
Ammonium		mg/l	News
Fer Divalent		mg/l	I Nom :
Manganèse		mg/l	Dosage du
Chlorure		mg/l	TAC Calculer

b) Saisir les nombres (ci-dessous) de la colonne valeurs, et cliquer sur « Calculer » : Attention aux unités : en me/l et non mg/l

Paramètres	Valeurs	Unités
Température	35	°C
Conductivité		µS/cm
рH	7.75	
тн		me/l
ТА		me/l
TAC (pH 4,5)	0.674	me/l
CO, libre		mg/l
Calcium	0.620	me/l
Magnésium	0.1	me/l
Sodium	0.35	me/l
Potassium	0.050	me/l
Ammonium		mg/l
Fer Divalent		mg/l
Manganèse		mg/l
Chlorure	0.360	me/l
Sulfate	0.080	me/l
Nitrate	0	me/l
Nitrite		mg/l
Fluorure		mg/l
O₌ dissous		mg/l
Baryum		mg/l
Strontium		mg/l

c) Résultat analyse 3 (page 188) :

Comparer les résultats des colonnes Résultats, et Equilibre, pour validation (les résultats en gras sont les plus importants). En cas d'écart voir 3-3) Résultat

Paramètres		Valeurs	Unités	me/I	Paramètres	Résultats	Unités	Equilibre	Ca Cst.	Marbre	Atmosphère	Point T	Unités
Température		35,00	°C		ΣCations	1,120	me/l	pH	8,61	8,52	8,08	8,25	
Conductivité	с	120,4	µS/cm	146,4	ΣAnions	1,090	me/l	Δ pH	0,86	0.77	0,33		
рH		7,75			Balance	2,75	%			3,605			mg/l
гн	с	3,60	٩f	0,720	H,CO,	1,44	mg/IH2CO3	∆ CO ₂	-1,77		-0,55		mg/l
ΓA			٩f		HCO;	39,28	mg/l	TAC	3,25	3,61	3,25	4,86	of
TAC (pH 4,5)		3,37	٥f	0,650	CO3-	0,14	mg/l	H.CO,	0,19	0,26	0,66	0,66	mg/I H2CO3
CO, libre	с	0,87	mg/l	0,020	CO, Total	0,67	mmol/l	HCO;	37,23	41,9	38,89	58,65	mg/l
Calcium		12,40	mg/l	0,620	λ	-0,015	mmol/I Ca	CO3-	0,95	0,86	0,29	0,68	ma/l
Magnésium		1,21	mg/l	0,100	SatuRatio	0,15		CO, Total	0,63	0,71	0,65	0,97	mmol/l
Sodium		8,05	mg/l	0,350	Туре	Agressive		∆ CO ₂ T	-0,04	0,04	-0,02	-	mmol/l
Potassium		1,95	mg/l	0,050	SatuCO2	2,18		Calcium	12,4	13,84	12,4	18,83	mg/l
Ammonium			mg/l					SatuCO2	0,28	0,40	1,00	1,00	
Fer Divalent			mg/l		Nom :			Saturatio	1,00	1,00	0,31	1,00	
Manganèse			mg/l					Туре	Equilibre	Equilibre	Agressive	Equilibre	
Chlorure		12,78	mg/l	0,360	\square	\bigcirc	Traiter					_	
Sulfate		3,84	mg/l	0,080	<u>~</u> 0			Classe d'e	eau selon l	a réglemer	ntation :		
Nitrate		0,00	mg/l	0,000	de la companya de la comp	2	Indices	Eau agn	essive (C	J. 3) / C	alcium Cst.		
Nitr ite			mg/l										
Fluorure			mg/l			<u> </u>							
O, dissous	с	7,1	mg/l	100		abe							
Baryum			mg/l			i se en la companya de la							
Strontium			mg/l		•	<u></u>	certitude						

Vous pouvez enregistrer l'analyse et les résultats en cliquant sur Fichier/Enregistrer

3-3) RESULTAT :

Si les résultats obtenus sont conformes : l'installation est validée. Sinon, vérifier :

- a) valider avec la touche (retour chariot) après saisie des nitrates et avant de cliquer sur "Calculer". Sinon les nitrates ne sont pas forcément intégrés dans le calcul.
- b) vérifier que vous utilisez pour la saisie le séparateur décimale paramétré dans votre Windows (panneau de configuration/ Paramètres régionaux/Séparateur décimale) : "point" ou "virgule". Sinon les décimales ne sont pas intégrées dans le calcul.
- c) vérifier que le mode de dosage du TAC correspond à celui utilisé pour l'analyse saisie. Sinon le TAC sera faux (important pour les eaux à CO2T faible ou pH faible).
- d) vérifier que, si le mode choisi de dosage du TAC est "Non = colorimétrie", le pH de virage est bien 4.5 ou 4,5 selon le séparateur décimale choisi en b) ci-dessus.

4) GLOSSAIRE

Pour tous renseignements complémentaires voir l'ouvrage de Luc LEGRAND et Pierre LEROY "Prévention de la corrosion et de l'entartrage dans les réseaux de distribution d'eau" disponible chez CIFEC.

4-1) Domaine d'application du programme :

Le champ d'application du programme est le suivant : eau déminéralisée à l'eau de mer.

- La plage de minéralisation de l'eau est très large, mais ne doit pas dépasser une force ionique de 1M/l supérieure à celle de l'eau de mer. Dans l'état actuel de la chimie analytique et étant donné l'accès aux constants dans le logiciel, celui-ci peut être utilisé en connaissance de cause sur des eaux de concentrations plus élevées.

- L'eau contient en quantité négligeable des électrolytes faibles autres que l'acide carbonique et l'eau ellemême.

- Dans la zone de pH considérée, la formation d'ions complexes, d'hydroxydes, d'oxyanions, etc. est négligeable.

- La pression est voisine de la pression atmosphérique.

- La température ne dépasse pas 80°C.

- La quantité totale de CO_2 en phase liquide (sous forme de molécules ou d'ions) ne varie que par changement de phase (gaz carbonique entre phase liquide et phase vapeur, carbonate de Calcium entre phase liquide et phase solide).

4-2) Paramètres minimums obligatoires à mesurer sur le terrain :

Température, pH ou H₂CO₃ (CO₂libre), Titre alcalimétrique complet, concentration en calcium, plus anions et cations pour permettre le calcul de la force ionique.

Selon que l'on se trouve au laboratoire ou sur le terrain il faudra opter pour des mesures permettant d'obtenir la meilleure précision, sachant que pH (ou CO2libre) et température sont obligatoirement mesurés sur site et simultanément. Il est rappelé que la mesure du pH sur site est plus facile et précise en pratique que la mesure de la concentration en CO₂libre qui est donc facultative.

4-3) Conductivité électrique :

La conductivité électrique d'une eau est la conductance d'une colonne d'eau comprise entre deux électrodes

métalliques de 1 cm² de surface, séparées l'une de l'autre de 1 cm.

La conductivité électrique est l'inverse de la résistivité électrique. Elle est représentative de la teneur en matières minérales et sels dissous dans l'eau. La conductivité augmente quand la concentration en sels dissous augmente, et elle est fonction de la température.

Si la conductivité est comprise entre 200 et 333 micro-Siemens/cm, l'eau a une minéralisation moyenne. Unité :

Siemens/m ou micro-Siemens/cm.

La résistivité s'exprime en Ohm.cm.

résistivité(Ohm.cm)= 1 000 000/conductivité (microS/cm)

4-4) CO2 total, CO2libre :

Concentration totale en CO_2 , sous toutes ses formes, en milieu liquide, ou CMT = Carbone Minéral

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4973f

Total.

 $[CO_2 \text{ total}] = CMT.= [H_2CO_3]^* + [HCO_3^-] + [CO_3^2]^-$

La répartition du CO₂ selon le pH est donnée par le graphique suivant.

 $[H_2CO_3]^* = CO_2libre = CO_2dissous + [H_2CO_3]$ $CO_2dissous = dioxyde de carbone dissous non hydraté$ $[H_2CO_3] = dioxyde de carbone hydraté$ attention : PM $[H_2CO_3]^* = 62$ mais PM CO₂libre = 44

 $[HCO_3] = bicarbonate$

 $[CO_3^{2-}] = carbonate$

4-5) Concentrations à l'équilibre :

Pour lambda, force ionique et température constants, on détermine les concentrations de cette eau amenée à l'équilibre calcocarbonique. Deux équilibres calcocarbonique sont calculés :

- avec même concentration en calcium et en faisant varier la concentration [CO₂ total] (droite verticale), c'est à dire en simulant un échange de CO₂.

- en faisant varier les concentrations $[CO_2 \text{ total}]$ et $[Ca^{2+}]$ de la même quantité (droite de pente 1), c'est à dire en simulant l'essai au marbre.

4-6) SatuRatio :

Le Saturatio, ou indice de saturation, est un rapport quantitatif de la cinétique permettant d'apprécier le caractère agressif ou incrustant d'une eau : Saturatio = $[Ca^{2+}] \times [CO_3^{2-}] / Ks'$ Ks' = produit de solubilité du carbonate de calcium.

Le *SatuRatio* permet de quantifier facilement l'écart à l'équilibre et permet de comparer la vitesse de formation du dépôt calcique de 2 eaux.

Ne pas confondre avec l'indice de saturation de LANGELIER qui dépend du pH et n'est que qualitatif.

- Si Saturatio < 1 : l'eau est agressive.
- Si Saturatio = 1 : l'eau est à l'équilibre (habituellement de 0,99 à 1,10, cet intervalle est paramétrable dans le menu Option Calcul).

Si Saturatio > 1 : l'eau est incrustante.

Le Saturatio idéale en tête de réseau d'eau potable est d'environ 1,2 car il évite l'entartrage et freine la corrosion (voir PREVENTION de la CORROSION et de l'ENTARTRAGE dans les RESEAUX de DISTRIBUTION d'EAU de Luc LEGRAND et Pierre LEROY, édité par CIFEC).

Si Saturatio > 40 : l'eau est instable et spontanément incrustante même en l'absence de germe précursseur de carbonate de calcium. L'indice DIN 38 404-10 peut être obtenu en calculant le logarithme décimal du Saturatio.

4-7) SatuCO2 :

Le *SatuCO2* est le rapport entre la concentration de CO_2 libre dans l'eau et celle qui correspond à l'équilibre avec l'air définie par la loi de Henry. Il est donc égal à 1 lorsque l'équilibre est atteint. Il est supérieur à 1 lorsque l'eau contient plus de CO_2 libre que le fixe la loi de Henry.

4-8) Ecart de balance ionique :

Différence en pourcentage entre la demi somme des concentrations en meq/l des cations et des anions. Si l'analyse est correcte l'écart de balance ionique est proche de 0% pour un pH voisin de 7. On considère qu'un écart de balance compris entre -5% et +5% est acceptable.

4-9) Eléments caractéristiques :

Mg²⁺, Na⁺, K⁺, Cl⁻, SO₄²⁻, NO₃²⁻. Ils sont constants pour un graphique [CO₂ total] - [Ca²⁺] donné.

4-10) Eléments fondamentaux :

H⁺,OH⁻,Ca²⁺,HCO₃⁻,CO₃²⁻,H₂CO₃. Ils sont variables pour tous points du graphique [CO₂ total] - [Ca²⁺].

4-11) Essai au marbre :

L'essai au marbre permet de déterminer si une eau est agressive, incrustante ou à l'équilibre (inactive). La quantité de CaCO₃ échangée pendant l'essai au marbre (Δ CaCO₃ dans le programme) permet de quantifier le caractère incrustant ou agressif d'une eau. Malheureusement la manipulation au laboratoire a peu de valeur car la température n'est pa scelle du site et l'eau a évoluée pendant le transport. Par contre la simulation obtenue avec le programme est rigoureuse.

Mode opératoire au laboratoire :

Mesurer le pH (= pH initial) et l'alcalinité totale (= alcalinité totale initiale) de l'eau à analyser. Rincer une quantité suffisante de marbre blanc, chimiquement pur et finement divisé, avec de l'eau à analyser. Remplir au tiers, un erlenmeyer de 250 ml, avec le marbre rincé. Remplir d'eau à analyser l'erlenmeyer contenant le marbre, en introduisant l'eau au fond du récipient, au moyen d'un tube. Laisser déborder en évacuant toutes les bulles d'air. Boucher hermétiquement le récipient, sans bulles d'air. Après 48 heures, filtrer.

Sur le filtrat, mesurer le pH (= pH de saturation) et l'alcalinité totale (= alcalinité totale de saturation).

Si pH initial < pH de saturation et

alcalinité totale initiale < alcalinité totale de saturation, l'eau est agressive.

Si pH initial > pH de saturation et

alcalinité totale initiale > alcalinité totale de saturation, l'eau est incrustante.

4-12) Force ionique :

Force ionique = demi-somme du produit Cn*Vn2 pour chaque ion présent dans la solution. Cn concentration en mole/l de l'ion n. Vn valence de l'ion n.

4-13) Indice de saturation de LANGELIER :

L'indice de saturation de Langelier est une valeur en pourcentage (ou pH) permettant d'apprécier de façon qualitative et non quantitative le caractère agressif ou incrustant d'une eau.

Indice saturation = I = 100 * (pH - pHs) en pourcentage ou I = pH - pHs en unité pH. pHs

pHs = pH de saturation à l'équilibre avec $[Ca^{2+}] \times [HCO_3^{-}]$ constant. En pratique avec le programme : pHs = pH (*colonne Calcium constant*).

Si indice sat. > 0 : l'eau est incrustante.

Si indice sat. < 0: l'eau est agressive.

Si indice sat. = 0 : l'eau est à l'équilibre.

Ne pas confondre avec l'indice de saturation noté Saturatio qui dépend du produit de solubilité et qui est quantitatif.

4-14) lambda :

Lambda = (Demi-somme des charges des anions caractéristiques) - (demi-somme des charges des cations caractéristiques).

Si lambda est positif, la valeur minimale de $[Ca^{2+}]$, sur la courbe d'équilibre calcocarbonique $[CO_2 total]/[Ca^{2+}]$, est trés peu différente de lambda. La concentration en $[CO_2 total]$ correspondante est trés

faible.

Si lambda est négatif, la valeur minimale de $[Ca^{2+}]$, sur la courbe d'équilibre calcocarbonique $[CO_2 tota]/[Ca^{2+}]$, est très faible. La concentration en $[CO_2 tota]$ correspondante est trés peu différente de la

valeur absolue lambda.

Dans le programme le Lambda est calculé par Lambda = $([Ca^{2+}] - TAC)/2$ (en meq/l) pour obtenir une meilleure précision. Cette formule vient de la relation de neutralité électrique : $2[Ca^{2+}] + P = [HCO_3^-] + N$.

Voir p.16, 28 et 331 de l'ouvrage de Luc LEGRAND et Pierre LEROY "Prévention de la corrosion et de l'entartrage dans les réseaux de distribution d'eau" disponible chez CIFEC.

4-15) Masse moléculaire Valence :

	Masse mo	oléculaire	Valence				
Ca ²⁺	40		2				
Mg^{2+}	24,3		2				
Na ⁺	23		1				
K^+	39		1				
Cl-	35,5		1				
SO4 ²⁻	96		2				
NO ₃ ²⁻	62		1				
		Masse me	oléculaire				
CaCO ₃		100					
Na ₂ CO ₃		106					
Ca(OH) ₂		74					
NaOH		40					
HCl		36,5					
Cl_2		71					
FeCl ₃		162,5					
Al ₂ (SO ₄) ₃ ,	18 H2O	666					
$Al_2(SO_4)_3$		342					
CO ₂		44					
H_2CO_3		62					

4-16) pH (mesure et d'équilibre)

a) mesure du pH :

Le pH saisi et utilisé par le programme pour les calculs, **doit obligatoirement être mesuré sur site** dès la prise d'échantillon et à la température de l'échantillon et non au laboratoire. La température saisie dans le programme sera celle de l'échantillon lors de la mesure du pH et non celle du laboratoire.

La compensation automatique de température, des pH-mètres potentiométriques, permet de rattraper l'interférence de la température sur la réponse de l'électrode pH, mais ne permet pas de prédire le pH à une autre température que celle de l'échantillon. Il faut donc faire la mesure de pH avec compensation de température et noter le pH et la température, au point de prélèvement, pour les saisir dans le programme. Si la température du réseau étudié diffère de la température obtenue lors de la mesure, il faudra faire un premier traitement de "mise à température dans le programme" pour obtenir le pH et les caractéristiques de l'eau correspondants à la température du réseau.

Sans ces précautions les résultats n'ont pas de valeur.

b) pH à l'équilibre avec même concentration en calcium :

Pour une eau à un pH donné ($[Ca^{2+}]$, lambda, force ionique et température constants), on détermine le pH de

cette même eau à l'équilibre calcocarbonique avec même concentration en calcium. Si pH à l'équilibre > pH, l'eau est agressive. Si pH à l'équilibre < pH, l'eau est incrustante. Si pH à l'équilibre = pH, l'eau est à l'équilibre.

4-17) Somme des anions :

Somme des concentrations en meq/l des anions caractéristiques : Cl^- , SO_4^{2-} , NO_3^{2-} , plus somme des anions fondamentaux : HCO_3^- , CO_3^{2-} , OH^- .

4-18) Somme des cations :

Somme des concentrations en meq/l des cations caractéristiques : Mg^{2+} , Na^+ , K^+ , plus somme des cations fondamentaux : Ca^{2+} , H_3O^+ .

4-19) TA et alcalinité composite :

Le titre alcalimétrique (simple) mesure la teneur en alcalis libres et en carbonates alcalins caustiques. TA = $2[CO_3^{2-}] + [OH^-] - [H^+]$

Le **TA** est égal à l'alcalinité mesurée au point d'inflexion du virage de la phénolphtaléine ou du titrage potentiométrique.

Unité : degré français, milli-équivalent par litre (meq/l).

1 degré français = 1/5 meq/l = 10 mg de carbonate de calcium / litre.

L'**alcalinité composite** (Ap) est égale à l'alcalinité mesurée au point de virage de la phénolphtaléine (8,3).

4-20) TAC et alcalinité totale :

Le titre alcalimétrique complet (total) mesure la teneur en alcalis libres, carbonates et hydrogénocarbonates.

 $TAC = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] - [H^{+}]$

Le **TAC** est égal à l'alcalinité mesurée au point d'inflexion du virage du méthylorange ou du titrage potentiométrique.

Unité : degré français, milli-équivalent par litre (meq/l).

1 degré français = 1/5 meq/l = 10 mg de carbonate de calcium / litre.

L'alcalinité totale (At) est égale à l'alcalinité mesurée au point de virage du méthylorange (4,5).

4-21) TH :

Le titre hydrotimétrique, ou dureté totale, est la somme des concentrations totales en calcium et en magnésium.

Une eau est douce si le TH < 75 mg/l de CaCO₃. Une eau est dure si le TH > 75 mg/l de CaCO₃. TH = $[Ca^{2+}] + [Mg^{2+}]$

Unité :

degré français, milli-équivalent par litre (meq/l). 1 degré français = 1/5 meq/l = 10 mg de carbonate de calcium / litre.

4-22) Unités :

meq/l:

milli-équivalent par litre Concentration(meq/I) = Concentration(mmole/I) x valence Concentration(meq/I) = <u>Concentration(mg/I) x valence</u>

masse moléculaire

mmole/l:

milli-mole par litre Concentration(mmole/l) = <u>Concentration(meq/l)</u> valence Concentration(mmole/l) = <u>Concentration(mg/l)</u> masse moléculaire

mg/l :

milli-gramme par litre. C (mg/l) = C (mmole/l) x masse moléculaire C (mg/l) = C (meq/l) x masse moléculaire

valence degré français : 1 degré français = 1 °F = 1/5 meq/l = 10 mg/l de carbonate ou 4 mg/l de calcium. milliéquivalent = 1 meq/l = 50 mg/l de carbonate de calcium = 5 °F degré allemand : 1 degré allemand = 17,86 mg/l de carbonate de calcium = 1,786 °F degré anglais : 1 degré anglais = 14,3 mg/l de carbonate de calcium = 1,43 °F degré américain : 1 degré américain = 17,2 mg/l de carbonate de calcium = 1,72 °F degré russe : 1 degré russe = 2,5 mg/l de carbonate de calcium = 0,25 °F ppm : 1 ppm de CaCO₃ équivalent = 1 mg/l de carbonate de calcium = 0,1 °F Degré Boutron-Boudet = 10 mg savon Marseille / l = 10,27 mg/l de carbonate de calcium = 1,027 °F

4-23) CO2 équilibrant : par rapport à l'équilibre à [Ca2+] constant

Ancienne appellation indiquée pour mémoire : L'acide carbonique libre $(H_2CO_3^*)$ d'une solution à l'équilibre avec le calcaire est appelé acide carbonique équilibrant. Dans le cas d'une eau agressive, on convient d'appeler "acide carbonique équilibrant" l'acide carbonique libre d'une solution à l'équilibre ayant le même produit $[Ca^{2*}] \times [HCO_3^-]$ que l'eau étudiée. Une eau est agressive si la concentration en acide carbonique libre est supérieure à la concentration en "acide carbonique équilibrant". En pratique avec le programme : $[CO_2 \text{ équilibrant}] = [H_2CO_3^*]$ (colonne Ca Cst.).

4-24) CO2 excédentaire : par rapport à l'équilibre à [Ca2+] constant

Ancienne appellation indiquée pour mémoire : Il correspond à la différence entre le " CO_2 libre" (H₂CO₃*) d'une eau et son " CO_2 équilibrant". Le " CO_2 excédentaire" n'existe que pour les eaux agressives. Il ne faut pas confondre comme c'est souvent le cas, acide excédentaire et acide agressif.: [CO_2 libre] = [CO_2 équilibrant] + [CO_2 excédentaire]

 $[CO_2 \text{ libre}] \neq [CO_2 \text{ équilibrant}] + [CO_2 \text{ agressif}]$

En pratique avec le programme : $[CO_2 \text{ excédentaire}] = [H_2CO_3^*]$ (colonne résultats) - $[H_2CO_3^*]$ (colonne Ca Cst.).

4-25) CO2 agressif : par rapport à l'équilibre de l'essai au marbre

Ancienne appellation indiquée pour mémoire : L'acide carbonique libre $(H_2CO_3^*)$ agressif d'une eau est égal à la différence entre l'acide carbonique de cette eau et l'acide carbonique libre d'une solution à l'équilibre ayant la même différence de concentration ([CO₂ total] - [Ca²⁺]).

Notion venant de l'ancienne notation : $CO_2 + CaCO_3 \rightarrow Ca(HCO_3)_2$

L'acide carbonique libre agressif d'une eau est donc égal à la différence entre l'acide carbonique de cette eau et l'acide carbonique libre de cette même eau à la fin de l'essai au marbre (évolution en présence de calcaire).

 $[CO_2 \text{ excédentaire}] > [CO_2 \text{ agressif}].$

En pratique avec le programme : $[CO_2 \text{ agressif}] = [H_2CO_3^*]$ (colonne résultats) - $[H_2CO_3^*]$ (colonne marbre).

Cette appellation est à abandonnée car pour une eau dont le point figuratif se trouve à gauche du nez de la courbe d'équilibre et sous la droite de pente 2, on calculer un CO_2 agressif alors que cette eau ne contient pas de CO_2 libre mais seulement des carbonates et bicarbonates.

4-26) Agressivité totale ou Agressivité au calcaire :

Ancienne appellation indiquée pour mémoire : L'agressivité totale d'une eau, ou agressivité au calcaire, est égale à l'acide carbonique libre agressif de cette eau :

Agressivité en mg/l de $CaCO_3 = 100 [CO_2 agressif] en mmole/l.$

Agressivité totale d'une eau est aussi égale à la différence entre la concentration en Ca^{2+} de cette eau et la concentration en Ca^{2+} de cette même eau à la fin de l'essai au marbre.

4-27) Indices de corrosivité, Larson et Leroy :

La corrosivité d'une eau est jugée selon deux critères complémentaires : Indice de Larson :

Indice de Larson = ([Cl⁻] + [SO₄²⁻]) / [HCO₃⁻] avec des concentrations en me/l.

L'eau est considérée comme non corrosive si l'indice de Larson est inférieur à 0,8 ou mieux à 0,5.

Indice de Leroy :

Indice de Leroy = $[HCO_3^-]/[Ca^{2+}]$ avec des concentrations en me/l.

L'eau est considérée comme non corrosive si l'indice de Leroy est compris entre 0,7 et 1,3.

4-28) Classes d'eau selon la réglementation en France, définie par la DGS :

Le Ministère de la Santé, dans la circulaire du 23 janvier 2007, qui précise les arrêtés du 11 janvier 2007, indique que l'eau doit être à l'équilibre ou légèrement incrustante. Il fixe aussi 5 classes en fonction de la différence entre le pH d'équilibre et le **pH de l'eau mesuré in situ**. La circulaire 2003-445 du 17 septembre 2003 précise que la méthode Legrand et Poirier doit être utilisée. Ce que fait parfaitement votre logiciel LPLWin.

Toutefois, la circulaire ne précise pas explicitement si le pH d'équilibre à prendre en compte est le pH d'équilibre à calcium constant (pHs de Langelier) ou bien le pH d'équilibre après contact avec le marbre (pH après contact avec le carbonate de calcium ou encore appelé pH au marbre). Ainsi, les contrôles sanitaires pouvant opter pour l'une ou l'autre référence, LPLWin permet de choisir l'une des deux en cliquant sur le bouton correspondant dans le menu Options/Calcul.

Les 5 classes d'eaux sont les suivantes :

 1^{re} classe : eau à l'équilibre calcocarbonique : - $0,2 \le pH_{eq}$ - pH in situ $\le 0,2$

 2^e classe : eau légèrement agressive : $0,\!2 - <math display="inline">p H$ in situ $\, \leq 0,\!3$

 3^{e} classe : eau agressive : 0,3 < pH_{eq} - pH *in situ*

 4^{e} classe : eau légèrement incrustante : - $0,3 \le pH_{eq}$ - pH in situ < - 0,2

 5^e classe : eau incrustante : pH_{eq} - pH in situ < - 0,3

LPLWin affiche dans la feuille d'étape, l'intitulé et la classe de l'eau considérée. Les limites fixées par défaut sont celles qui sont indiquées dans l'arrêté du 23/01/2007. Le logiciel permet de modifier ces valeurs notamment si un nouvel arrêté venait à en modifier les limites. La modification peut s'effectuer soit en cliquant sur les flèches situées à gauche de la zone de saisie (pas de 0,05 unité pH) soit en entrant directement la nouvelle valeur dans la zone de saisie.

Attention: le logiciel SISE-Eaux, des laboratoires, utilise une autre classification selon PH in situ - pHeq.

 $1^{re} \text{ classe DGS} = \text{classe 2 SISE}: eau \text{ à l'équilibre calcocarbonique}: -0, 2 \leq pH_{eq} - pH \text{ in situ} \leq 0, 2$

2^e classe DGS = classe 3 SISE : eau légèrement agressive : $0,2 < pH_{eq}$ - pH in situ $\leq 0,3$

 3^{e} classe DGS = classe 4 SISE : eau agressive : 0,3 < pH_{eq} - pH *in situ*

- 4^e classe DGS = classe 1 SISE : eau légèrement incrustante : $0,3 \le pH_{eq}$ pH *in situ* < 0,2
- 5^{e} classe DGS = classe 0 SISE : eau incrustante : pH_{eq} pH *in situ* < 0,3