LPLWIN 5.29 Mode d'emploi Notice 4021d

	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unité
Température	16,2	°C		ΣCations	5,724	me/l	pH	7,49	7,44		pH	8,73	
Conductivité	560	µS/cm	459	ΣAnions	5,715	me/I	Delta pH	0,24	0,18		Delta pH	1,48	
рН	7,25			Balance	-0,15	%	∆CaCO ₃		13,363	mg/l		-18,954	mg/l
тн	26,	٩f	5,2	H,CO;	27,574	mg/l	TAC	16,5	17,838	of	TAC	16,5	٩f
ГА		٩f		HCO;	200,918	mg/l	H,CO,	15,926	19,429	mg/l	H,CO;	0,866	mg/l
FAC .	16,5	٩f	3,3	CO]	0,18	mg/l	HCO;	200,631	216,963	mg/l	HCO;	190,234	mg/l
CO, libre	c 19,569	mg/l	0,445	CO ₂ Total	3,741	mM/I	CO3-	0,311	0,299	mg/l	CO3T	5,146	mg/l
Calcium	97,2	mg/l	4,86	λ	0,78		CO ₂ Total	3,551	3,875	mM/I	CO, Total	3,218	mM/I
/agnésium	4,131	mg/l	0,34	SatuRatio	0,58		∆CO₂t	-0,19	0,134	mM/I	∆CO₂t	-0,523	mM/I
Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,2	102,545	mg/l	Saturatio	16,5	
Potassium	3,315	mg/l	0,085	SatuCO2	31,85		SatuCO2	18,39	22,44		Туре	Calcifiante	
Ammonium	1,	mg/l	0,055	Nom:					1	1			
Fer divalent	0,5	mg/l	0,018	1				Tracer	Impri	mer	<u>M</u> ode de	dosage du T	.A.C.
Manganèse	0,5	mg/l	0,018	· · · · · · · · · · · · · · · · · · ·									
Chlorure	28,01	mg/l	0,789		Calculer		ല	Traiter	Fern	ner	Calcu	al d'incertitude	∋s
Sulfate	62,496	mg/l	1,302										
Vitrate	14,942	mg/l	0,241	Charles allow				nèrem ann	ee (CL 2)/	Call	Indice	s et Constani	les
Vitrite	1,1	mg/l	0,024	Liasse diea	iu seion la He	giernent		goroni. dyn	555. (Cl. 23/)	Cuc		o or oonstan	
Fluorure	1,	mg/l	0,059										
Dxygèn e diss.	8,00	mg/l	81,2	Fichier:									

TABLE des MATIERES

1) PRÉSENTATION DU LOGICIEL	5
2) INSTALLATION DU LOGICIEL LPLWIN	8
2-1) Configuration minimale:	8
2-2) Version et Principe de l'Installation :	8
2-3) Installation : -> A LIRE AVANT INSTALLATION	8
2-4) Désinstallation :	9
2-5) Mise en route :	9
2-6) Déverrouiller la licence monoposte :	10
2-7) Transfert de la licence monoposte LPLWin sur un autre poste :	11
3) LES MENUS	12
3-1) Menu Fichier	13
3-2) Menu Analyse	17
3-3) Menu Visualiser	26
3-3-1) Affichage des feuilles d'étape en cascade	26
3-3-2) Affichage des feuilles d'étape en mosaïque horizontale	26
3-3-3) Affichage des feuilles d'étape en mosaïque verticale	27
3-3-4) Rangement des icones	27
3-3-5) Fenêtre	28
3-3-6) Commentaires et Conseils	29
3-4) Menu Rapport	30
3-4-1) Une eau	30
3-4-2) Tout	30
3-5) Menu Options	32
3-5-1) Calcul	32
3-5-1-1) Ecart entre conductivité saisie et calculée :	32
3-5-1-2) Balance ionique :	33
3-5-1-3) Contrôle de saisie :	33
3-5-1-3) Caractérisation de l'eau	33
3-5-1-4) SatuRatio d'équilibre :	34
3-5-1-5) Classes d'eau selon la DGS et SISE:	34
3-5-1-6) Pression de CO_2 :	34
3-5-1-7) Nombre de boucles :	35
3-5-1-8) Choix du produit de solubilité du carbonate de calcium	36
3-5-1-9) Choix de la température d'expression de la conductivité	37
3-5-2) Unités d'entrée	38
3-5-3) Unités de sortie	39
3-5-4) Incertitudes	40
3-5-5) Importation	41
3-5-6) Pureté des réactifs	42
3-5-7) Langue	44
3-6) Menu ?	44
4) LA FEUILLE DE SAISIE ET DE CALCUL	45
4-1) Generalites.	45
4-2) L'entree des donnees	45
4-3) La Saisie du nom de l'eau	51
4-4) Mode de dosage du TAC	52
4-3) remer	52
4-0) Calculer	52
4-0-1) Le TAU competest negatif	52 52
4-0-2) Tout transment de finise à l'équilibre à la soude est impossible	33 50
4-0-5) ras u eau a requinible ayant le meme Calcium	33 52
4-0-4) La valance ivinque depasse la minite fixee	55

4-6-5) Le delta conductivité/résistivité calculée – saisie dépasse la limite fixée	. 53
4-6-6) Le pH théorique calculé est différent du pH saisi	. 53
4-6-7) Ignorer le pH (utiliser le CO2 libre) ?	. 53
4-7) Les résultats du calcul	. 54
4-7-1) Zone de saisie des paramètres	. 54
4-7-2) Résultats	. 55
4-7-3) Equilibre calco-carbonique	. 56
4-7-4) Equilibre avec le CO2 atmosphérique	. 56
4-8) Les fonctions ou informations disponibles	. 56
4-8-1) Classe d'eau selon la réglementation	. 57
4-8-2) Impression	. 57
4-8-3) Calcul d'incertitude	. 57
4-8-4) Indices et constantes.	. 61
4-8-4-1) Indices calcocarboniques :	. 61
4-8-4-2) Indices de corrosivité :	. 62
4-8-4-3) Représentation graphique de la minéralisation (Stabler)	62
4-8-4-4) CO ₂ divers :	62
4-8-4-5) Constantes d'équilibre :	62
4-8-4-6) Comparaison activités et concentrations :	. 02 62
4-8-4-7) Correction du TAC colorimétrique	. 02
4-8-4-7) Correction du TAC colorimentque	. 02
4 8 4 0) Conductivitá calculáe	. 05 64
4-8-4-9) Colluctivite calcule	. 04 64
4-8-5) Treaser	. 04 64
4 - 6 - 5) Hatel	. 04
4-8-0 Copier 1 image	. 70
$4 - 8 - 7) Copier retexte \dots$. 70
4-8-8) Iraller	. 12
5) IKAITEMEN IS	. 13
5-1) Milse a l'equilibre	. 13
5-1-1) Cas des eaux agressives	. 13
5-1-2) Cas des eaux calcillantes	. /3
5-2) Ajout a une dose imposee	. /8
5-2-1) Reactifs acido-basiques, de clarification et de remineralisation	. 79
5-2-2) Reactifs oxydants	. 80
5-2-2-1) Le chlore	. 81
5-2-2-2) L'hypochlorité de sodium	. 83
5-2-2-3) L'hypochlorite de calcium	. 85
5-2-2-4) Le permanganate de potassium	. 85
5-2-3) Réactifs réducteurs	. 86
5-3)	. 87
5-4) Mise à un pH imposé	. 90
5-5) Mise à une température imposée	. 92
5-6) Décarbonatation ou adoucissement	. 93
5-6-1) Principe de la Décarbonatation	. 93
5-6-2) Principe de l'Adoucissement	. 94
5-6-3) Décarbonatation à la chaux	. 94
5-6-4) Décarbonatation à la soude	. 98
5-6-5) Décarbonatation électrolytique	. 99
5-6-6) Adoucissement sur résines	. 99
5-7) SatuRatio imposé	100
5-8) Reminéralisation	102
5-9) Mélange de deux eaux	106
5-10) Concentration	108
5-11) Satu CO2 imposé	110

5-12) Aération-Déferrisation	
5-12-1) Rappels théoriques	
5-12-2) L'eau contient du fer divalent mais pas de manganèse	
1) Injection d'air en réacteur clos	
2) Pulvérisation ou barbotage d'air	
5-12-3) L'eau contient du fer divalent et du manganèse	
1) Injection d'air en réacteur clos	
2) Pulvérisation ou barbotage d'air	
3) Injection d'air ozoné	
5-12-4) L'eau ne contient pas de fer divalent	
5-13) Nitrification biologique	
5-13-1) Rappels	
5-13-2) Applications dans LPLWin	
5-14) Réduction chimique des nitrates	
5-14-1) Rappels	
5-14-2) Application dans LPLWin	
6) GLOSSAIRE	
6-1) Domaine d'application du programme :	
6-2) L'ensemble des paramètres suivants est le minimum obligatoire à mesurer sur le	terrain : 127
6-3) Conductivité électrique :	
6-4) CO2 total, CO2libre :	
6-5) Concentrations à l'équilibre :	
6-6) SatuRatio :	
6-7) SatuCO2 :	
6-8) Ecart de balance ionique :	
6-9) Eléments caractéristiques :	
6-10) Eléments fondamentaux :	
6-11) Essai au marbre :	
6-12) Force ionique :	
6-13) Indice de saturation de LANGELIER :	
6-14) lambda :	
6-15) Masse moléculaire Valence :	
6-16) pH (mesure et d'équilibre)	
6-17) Somme des anions :	
6-18) Somme des cations :	
6-19) TA et alcalinité composite :	
6-20) TAC et alcalinité totale :	
6-21) TH :	
6-22) Unités :	
6-23) CO2 équilibrant : par rapport à l'équilibre à $[Ca^{2+}]$ constant	
6-24) CO ₂ excédentaire : par rapport à l'équilibre à [Ca ²⁺] constant	
6-25) CO2 agressif : par rapport à l'équilibre de l'essai au marbre	
6-26) Agressivité totale ou Agressivité au calcaire :	
6-27) Indices de corrosivite, Larson et Leroy :	
0-28) Classes d'eau seion la reglementation en France, definie par la DGS :	
 INOUCE 298/D ANALYSES de VALIDATION du Logiciel LPLWIN 5 EODMULAIDE DIENDE OLEMENTE 	
ð) FUKIVIULAIKE DENKEGISI KEIVIEN I	

1) PRÉSENTATION DU LOGICIEL

Généralités

LPLWIN sous Windows permet de savoir rapidement si une eau est agressive ou incrustante vis à vis de l'équilibre calco-carbonique ainsi que ses caractéristiques vis-à-vis du gaz carbonique atmosphérique. Le programme utilise la méthode française, de Messieurs LEGRAND, POIRIER et LEROY, mondialement reconnue et décrite dans l'ouvrage "Prévention de la corrosion et de l'entartrage dans les réseaux de distribution d'eau" de Luc LEGRAND et Pierre LEROY, disponible auprès de la CIFEC. Les résultats sont quantitatifs et non qualitatifs, contrairement aux autres méthodes graphiques ou indicielles qui sont des approximations ne se justifiant plus, maintenant que l'informatique permet de résoudre rapidement les équations de l'équilibre calco-carbonique.

LPLWin 5 est aussi le **seul logiciel** de résolution de l'équilibre calco-carbonique qui permet de calculer les **incertitudes sur les résultats** à partir des marges d'erreur sur les valeurs analytiques saisies.

La saisie se fait dans l'unité de son choix pour chacune des valeurs. Il est aussi possible d'importer des données directement à partir d'un fichier Microsoft Excel⁽¹⁾. Les raccourcis clavier et la **souris** facilitent l'utilisation. Après contrôle de la cohésion des valeurs entrées et affichage des résultats, le programme permet de **simuler de très nombreux traitements** qui apparaissent dans des étapes successives. On peut ainsi simuler l'évolution de l'eau tout au long d'une filière de traitement.

LPLWin permet également à chaque étape, de visualiser sur le **graphique CO**₂**T** = **f**(**Ca**²⁺) la position relative du point figuratif de l'eau par rapport aux courbes d'équilibre calcocarbonique, d'équilibre avec leCO2 atmosphérique et la courbe 40 K'_s de précipitation spontanée. Il est possible d'explorer le graphique point par point et de connaître les caractéristiques de l'eau en tous points du plan. Le programme permet l'impression et l'enregistrement des résultats de l'analyse avec les graphiques. Le programme étant développé pour **Windows**, le **copier/coller** vers d'autres programmes Windows (tableur, traitement de texte...) permet l'exploitation directe des résultats. Cette notice, réalisée avec Word Windows Microsoft¹, vous présente des copies d'écran directement importées par la fonction copier/coller de Windows (presse-papier) à partir du programme LPLWIN.

Enfin, **LPLWin 5 aide l'utilisateur** dans le choix des doses de traitement ou des objectifs de qualité qui sont compatibles avec les caractéristiques de l'eau. Cette nouvelle fonctionnalité fait de LPLWin un véritable **système expert en traitement de l'eau**.

¹ Word, Excel Windows et Windows sont des marques déposées de Microsoft Corporation.

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33(0)146404949 - Fax: +33(0)14640087 - Email: <u>info@cifec.fr</u> - Web <u>www.cifec.fr</u>

Gestion des résultats

Pour une eau donnée, LPLWin utilise un masque de saisie des données analytiques et d'affichage des résultats qui est appelé « Etape ». La première étape (étape 0) permet la saisie des données et fournie les résultats des calculs des divers équilibres. Les étapes suivantes sont consacrées aux simulations de traitements. LPLWin peut gérer jusqu'à 9 étapes de traitement successives.

💭 Eau: 1 Et	ape: 0	Essai Présenta	tion LPWIN XXXXXXXX			
	Valeur	Unité en me/l	Résultats Unité	Equilibres Ca Cst.	Marbre Unité	Equilibre Atmosphère Unité
Température	16.2	°C	ΣCations	pH		pH
Conductivité		µS/cm	ΣAnions	Delta pH		Delta pH
рН	8		Balance	ACaCO,		Δ CO ₂
тн		of	H,CO,	TAC		TAC
ТА		of	HCO;	H ₂ CO		H,CO,
TAC	16.5	of	CO3	HCO;		HCO;
CO ₂ libre		me/l	CO ₂ Total	CO3		CO ₂ ⁻
Calcium	4.86	me/l	λ	CO ₂ Total		CO ₂ Total
Magnésium	0.34	me/l	SatuRatio	∆CO₂t		∆CO₂t
Sodium	0.347	me/l	Туре	Calcium		Saturatio
Potassium	0.085	me/l	SatuCO2	SatuCO2		Туре
Ammonium	1.8	mg/l	Nom: Essai Présentation	a l	1	1
Fer divalent	0.1	me/l	Lasari rescritation	Tracer	Imprimer	Mode de dosage du T.A.C.
Manganèse	0.3	me/l				
Chlorure	0.789	me/l	<u>C</u> alculer	Iraiter	Fermer	Calcul d'incertitudes
Sulfate	1.302	me/l				
Nitrate	0.241	me/l	Classa d'acus calau la Réalaccaut			Indices et Constantes
Nitrite	0.1	me/l	Classe dieau selon la Regiement	adon		inglobe of contention
Fluorure	0.4	me/I				
Oxygène diss.		mg/l	Fichier: EssaiPrésentation.l	DW		
			·			

De plus LPLWin permet d'afficher et effectuer tous les calculs et traitements simultanément sur deux eaux différentes affichées à l'écran (Eau 1 et Eau 2), permettant ainsi de simuler les mélanges.

Enfin, comme tout logiciel sous Microsoft Windows, une barre de menus déroulants permet d'accéder à de très nombreuses fonctions ou options telles que importer des fichiers, les sauvegarder, modifier ou saisir les résultats d'analyses, imprimer toutes les données et résultats ou encore préciser les unités utilisées par défaut et d'autres paramètres nécessaires aux calculs.

Aide en ligne et aide à la décision

Outre le présent mode d'emploi, LPLWin affiche lorsque c'est nécessaire ou utile, quelques informations rappelant par exemple la fonction d'un bouton ou d'une touche. Ces informations apparaissent soit sous le pointeur de la souris, soit sur la ligne inférieure de l'écran.

🗰 Fau: 1 Etape: 0 Essai Préser		
Living link land		
Température 16,2 °C	ΣCations 6,132 me/ pH 7,5 7,55 pH 8,73	
Conductivité c 614 µS/cm 504	E Anions 6, 132 me/l Delta pH -0, 51 -0, 45 Delta pH 0, 73	
pH 8	Balance 0, % <u>ACaCO</u> , -13,755 mg/l <u>A CO</u> , -2,821 mg/l	
TH c 26, of 5,2	H_CO_ 4,841 mg/l TAC 16,5 15,129 °f TAC 16,5 °f	
TAC 16.5 95 2.2	HCO ₂ 199/046 mg/i HCO ₂ 15,659 12,541 mg/i HCO ₂ 0,866 mg/i	
CO, libre c 0.078 me/ 0.078	CO_ Total 3.358 mM/ CO ^{2*} 0.318 0.332 mg/ CO ^{2*} 5.154 mg/	
Calcium 4.86 me/l 4,86	λ 0,78 CO, Total 3,546 3,22 m ^M /l CO, Total 3,212 m ^M /l	
Magnésium 0.34 me/i 0,34	SatuRatio 3,18 ACO_t 0,188 -0,138 mM/l ACO_t -0,146 mM/l	
Sodium 0.347 me/ 0,347	Type Calcifiante Calcium 97,2 91,698 mg/l Saturatio 16,17	
Potassium 0.085 me/ 0.085	IsatuCO2_5.59 SatuCO2_13,08_14.48 Type Calchante	
For divalent 0.1 me/ 0.1	Nom: Essai Présentation A Tracer Imprimer Mode de dosage du T.A.C.	
Manganèse 0.3 me/ 0,3		
Chlorure 0.789 me/i 0,789	Copie (Image vers le Presse mark (Eithap)	
Sulfate 1.302 me/ 1,302		
Ntrate 0.241 me/ 0,241	Classe d'eau selon la Réglementation Eau incrustante (Cl. 5)/Ca Cst Inglices et Constantes	
Numer 0.1 me/ 0.1		
Oxygène diss. c 9,85 mg/ 100,0	/ Schier: EssaPrésentation.low	

D'autres informations permettent de guider l'utilisateur dans le choix du paramètre à modifier ou sur la plage de valeurs compatibles avec le traitement.

Cette nouvelle fonction fait de ce logiciel un véritable système expert en traitement de l'eau.

Calculs d'incertitudes sur les résultats

LPLWin 5 est le premier logiciel qui fait appel à la nouvelle méthode de **calcul d'incertitude** dite de « Monté Carlo » pour l'estimation des incertitudes sur les conditions d'équilibre, sur la quantité de carbonate qui peut être dissoute ou précipitée ainsi que sur les doses de réactifs.

Fichier Analyse Visualiser Rapport Options ?	
IP Fau: 1 Ftane: 0 Essai Présentation I DWIN XXXXXXX	
Valeur Unité en me/i Résultats Unité Equilibres Ca Cst. Marbre Unité Equilibre Atmosphère/Unité	
Température 16,2 °C 2. Cations 6,132 me/ pH 7,5 7,55 pH 8,73	
Conductivité c 614 µ5/cm 304 Z.Anons 6,132 me/i Deita pH -0,51 -0,45 Deita pH 0,73	
TH \$ 26. 47 5.2 4.841 mn1 TAC 16.5 15.29 4 TAC 16.5 4.57 4 TAC 16.5 4.51 15 15 4 TAC 16.5 4.51 15 15 4 TAC 16.5 15 15 15 15 15 15 15 15 15 15 15 15 15	
TA of 199,045 mad 10001 15,659 12,541 mad 10001 0,956 mad	
TAC 16.5 +f 3, Incertitudes sur les résultats de l'Eau : 1 - Etape : 0	
CO, libre c 0,078 me/l 0, Paramètres saisis Résultats	Diagnostic Etape 0
Calcium 4.86 me/ 4.8	Type d'eau
	Agressive (%)
Potassium 0.085 me/ 0.0 pH 8.0 ± 0.2 Lambda 0.78 ± mH/L	Equilbre (%)
Ammonium 1.8 mg/ 0,0 TAC 16.5 ± 0,1 ¹⁴ CO2 Total 3,358 ± mM/L	Calcifiante (3)
Fer divalent 0.1 me/ 0, CO2 Libre ± mg/l Saturatio 3.18 ±	
Nanganèse 0.3 me/ 0.1	Réglementation
Emotore 0.789 me/ 0, 10 Equilibres	Agressive (%)
Nitrate 0.241 med 0. Calcium 197.2 ± 2 mg/l Calcium Constant Marbre	Légèrement
Nitrite 0.1 me/l 0.	Agressive (%)
Fluorure 0.4 me/ 0,4 Calcular Insulant	Equilbre (%)
Oxygene des. (c)9,85 mg/ 1/2 Lactor (numerical acCo2 Tot. (0,188 = mM/L +0.138 =) mM/L	Légèrement
ACaCO3 13,755 ± mg/L	Incrustante (%)
Unités dE tritée Unités de Sorie	Incrustante (%)

2) INSTALLATION DU LOGICIEL LPLWIN

2-1) Configuration minimale:

- poste station W7/ W8/W10 (non serveur).

- Lecteur de CD-Rom ou port USB

2-2) Version et Principe de l'Installation :

Ce logiciel monoposte est compatible avec Windows mais pas Windows serveur ou Windows virtuel. La version 5 monoposte de ce CD-Rom permet d'installer le logiciel autant de fois que nécessaire, mais ne sera déverrouillé que sur un seul poste simultanément. Une fois installé le logiciel ne pourra démarrer que 5 fois avant déverrouillage. Un code fourni par CIFEC, selon le numéro de série de votre logiciel spécifique au poste installé, permet de le déverrouiller et de rendre illimité le nombre d'utilisations (voir 2.6 Déverrouiller la licence monoposte). Une procédure permet, si nécessaire, de transférer la licence sur un autre poste (voir Transfert de licence sur un autre poste).

2-3) Installation : -> A LIRE AVANT INSTALLATION

a) Mettre en route Windows et fermer tous les programmes en cours sur le poste que vous voulez équiper. Attention: pour permettre l'installation, vous devez avoir des droits administrateur sur Windows et donc la table de registres ne doit pas être verrouillée. Pour cela, sous Vista ou W7 ou 8 ou 10, dans le "panneau de configuration", "compte utilisateur", il faut temporairement mettre au minimum la protection du compte(*) utilisateur et redémarrer Windows pour qu'il en tienne compte. Si nécessaire demander assistance à votre service informatique.

(*) Windows 10 : rechercher "panneau de configuration" puis choisissez "Comptes d'utilisateurs" puis "Comptes d'utilisateurs" puis "Modifier les paramètres de contrôle du compte d'utilisateur"
(*) Windows 7 : rechercher "Modifier les paramètres de contrôle de compte"

b) Insérer le CD-Rom d'installation dans le lecteur du poste.

REMARQUE: vous pouvez installer le logiciel sur un poste n'ayant pas de lecteur de CD-Rom, en utilisant une clé USB où vous pouvez copier le contenu du CD-Rom.

c) Cliquer sur "Démarrer", puis sur "Poste de travail", puis sur le lecteur de CD-Rom. Cliquer avec le bouton DROIT sur le fichier SETUP_LPLWIN529.exe du CD-Rom, et, dans le menu apparaissant, sur "Exécuter en tant qu'administrateur".

d) Suivre les indications d'installation.

Le message "starting error" n'a pas d'influence sur la qualité de l'installation.

Le programme d'installation va créer l'icône "LPLWIN" permettant de démarrer le programme LPLWIN5.EXE dans le dossier "PROGRAM FILES\LPLWIN".

e) Une fois l'installation terminée, il vous faut démarrer le programme une première fois en tant qu'administrateur : Cliquer avec le bouton DROIT sur l'icône du programme LPLWin, et dans le menu apparaissant, sur "Exécuter en tant qu'administrateur"

f) Vous pouvez remettre la protection du compte utilisateur à l'état initial et redémarrer Windows.
En tant qu'administrateur, il vous restera à déverrouiller la licence, voir page suivante :
2-5) MISE en ROUTE et 2-6) DEVERROUILLER la LICENCE MONOPOSTE.

2-4) DÉPANNAGE en cas de problème lors de l'installation :

- Si dans le bordereau de saisie d'analyse les légendes s'affichent mal (absence de légendes ou caractères illisibles): aller dans le menu "?" / "A propos de" et cliquer sur le bouton "Activation des caractères". Fermer LPLWin etr redémarrer Windows. Rouvrir LPLWIN, les légendes doivent maintenant apparaître normalement. Si ce n'est toujours pas le cas, mettre à jour le driver de votre carte écran.

- Si le logiciel ne tient pas compte de décimales saisies, aller dans le PANNEAU de CONFIGURATION de Windows dans l'icône PARAMÈTRE RÉGIONAUX puis dans l'onglet NOMBRE et vérifier que le symbole décimal (point ou virgule) est celui que vous utilisez pour la saisie des valeurs, de même dans l'onglet SYMBOLE MONÉTAIRE.

- Si nécessaire désactiver temporairement vos ANTI-VIRUS pendant l'installation.

- Fermer tous les programmes en cours.

- Si lors de l'installation le fichier MSVCRT.DLL est déclaré comme en cours d'utilisation, cliquer sur IGNORER puis sur OUI.

- Si lors de l'installation il est demandé de redémarrer le système, retirer le CD-Rom en cours puis accepter le redémarrage. Après le redémarrage de votre machine mettre le CD-Rom dans le lecteur et relancer l'installation en cliquant sur "Démarrer", puis "Exécuter", taper ensuite x:SETUP,...

- Après installation du logiciel, nous vous conseillons d'arrêter votre PC et de le refaire démarrer pour forcer votre machine à tenir compte des mises à jour éventuelles des fichiers systèmes.

- Si vous n'arrivez pas à ouvrir un fichier d'analyse (.lpw) : vérifier la taille de ce fichier avec l'explorateur Windows. Si le fichier a une taille de zéro octet, vos droits Windows sont insuffisants pour écrire dans ce répertoire et le fichier est vide. Faite un test, en sauvegardant une analyse (.lpw) sur une clé USB par exemple, vous verrez que vous pourrez rouvrir l'analyse ce qui confirme un problème de droits.

- Si le problème persiste contacter M. Luc Derreumaux à la CIFEC : Tél: 33 (0)1 4640 4912 ou Email: LD@CIFEC.FR

2-4) Désinstallation :

Cliquer sur "Démarrer / "paramètres" / "panneau de configuration" / "Ajout-Suppression de programmes" / "LPLWIN" puis "Désinstaller". Si le désinstalleur vous parle de fichiers partagés; par précaution ne pas supprimer les fichiers partagés, pour cela cliquer sur "ne rien supprimer". Fermer toutes les fenêtres et arrêter votre PC, puis le redémarrer.

2-5) Mise en route :

1) Mettre en route Windows.

2) Mettre en route le programme en cliquant sur "Démarrer", puis "Programmes", et sur l'icône LPLWIN.

3) Lors de la première utilisation, voir ci-dessous 2-6) Déverrouillage, sinon cliquer sur "CONTINUER".

4) Lors de la première utilisation, valider votre installation via l'analyse de validation à saisir pour vérifier les résultats obtenus (voir notice 2987c en fin de ce manuel).

5) Pour arrêter le programme il faut cliquer sur <u>Q</u>uitter dans le menu Fichier.

6) N'oublier pas de déverrouiller votre licence LPLWIN selon le chapitre suivant.

2-6) Déverrouiller la licence monoposte :

1) Lors du démarrage de LPLWIN, un écran affiche votre numéro de série. Il vous faudra déverrouiller la licence, en saisissant un code, vous permettant de ne plus limiter le nombre de démarrage du logiciel à 5.

(à mettre à jour)

2) Noter en fin de ce manuel, le numéro de série affiché, spécifique à ce poste. Cliquer sur "imprimer le formulaire d'enregistrement". Compléter à l'écran le formulaire et l'imprimer en cliquant sur "Imprimer". Le transmettre à CIFEC par fax ou Email pour obtenir le code d'enregistrement, spécifique à ce poste, à saisir pour déverrouiller votre logiciel sur ce poste uniquement. Si vous n'avez pas d'imprimante raccordée à votre poste, utiliser le formulaire ce trouvant à la fin de ce manuel.

ATTENTION: CIFEC ne vous transmettra qu'un seul code de déverrouillage par licence achetée.

3) A la réception du code reçu de CIFEC, le noter en fin de ce manuel. **Démarrer Windows en tant qu'administrateur Windows. Démarrer LPLWin en tant qu'administrateur (clique droit).** Dans l'écran de démarrage de LPLWIN ou par le menu "? / A propos de...", cliquer sur "déverrouiller la licence" puis saisir le code reçu et cliquer sur "Ok" puis "CONTINUER" pour démarrer le logiciel. Si le code saisi est valide, il ne sera plus redemandé lors des prochaines utilisations de LPLWIN. Si le code n'est pas valide, vérifier le numéro de série.

Entrez le code de déverrouillage :	ОК
	Annuler
J	

ATTENTION: garder ce code de déverrouillage en le notant sur la dernière page de ce manuel, il vous permettra de réinstaller si nécessaire ce logiciel, mais sur ce poste uniquement.

Si le code est invalide, vérifier que votre numéro de série LPLWin est le même que celui indiqué lors de la réception de la clé de déverrouillage. **Vous devez avoir les droits administrateur Windows** pour effectuer cette opération.

2-7) Transfert de la licence monoposte LPLWin sur un autre poste :

Une fois la licence déverrouillée sur un **ancien poste** (**A**), si cette licence n'est plus utile sur ce poste, il est possible de la **transférer vers un nouveau poste** (**B**), en suivant la procédure ci-dessous. Vous pouvez procéder de la même façon pour la **mise à jour de LPLWIN4 vers LPLWIN 5**.

Sur l'ANCIEN POSTE (A) :

1) Si LPLWin est encore accessible : noter le numéro de série de LPLWin.

Sinon retrouver l'Email ou le fax que nous vous avions envoyé pour son déverrouillage et sur lequel vous avez le numéro de série cherché.

Sur le NOUVEAU POSTE (B) :

2) Installer le logiciel sur le nouveau poste (B) selon la procédure ci-dessus 2-3) Installation. Celui-ci est en évaluation pour 5 mises en route.

- 3) Cliquer sur le bouton "Imprimer le formulaire d'enregistrement", le remplir en y ajoutant le numéro de série LPLWin de l'ancien poste sur la ligne de la case à cocher « Re-installation sans transfert... » Imprimer ce formulaire et nous l'adresser par Email ou fax.
- 4) Nous vous adresserons par Email ou fax un courrier de désistement, à nous retourner, par lequel vous vous engagez à effacer et ne plus utiliser l'ancienne installation de LPLWin sur l'ancien poste.
- 5) Suite à quoi nous vous adresserons une nouvelle clé de déverrouillage.

3) LES MENUS

La barre de menus supérieure propose les six menus suivants qui se déroulent en cliquant dessus :

Chaque ligne de chaque menu est une fonction. Elle est équivalente, pour le menu Fichier, à celles que l'on rencontre dans tous les logiciels sous Windows. Pour les autres menus, les fonctions sont spécifiques à LPLWin et offrent à l'utilisateur, de nombreuses possibilités de choix qui seront détaillées ci-après.

Nouveau	Ctrl+h
Ouvrir Fermer	Ctrl+C
Enregistrer	Ctrl+S
C:\Documents and Settings\Pierre\Mes documents\C C:\Documents and Settings\Pierre\Mes documents\C C:\Documents and Settings\Pierre\Mes documents\C	Données Analytiques\Exemple500.lpw Données Analytiques\eau savoie 1.lpw
C: Documents and Settings Pierre Wes documents C: Documents and Settings Pierre Wes documents Exemple500.lpw C: Documents and Settings Pierre Wes documents C: Documents C: Documents and Settings Pierre Wes documents C: Docu	Données Analytiques\Exemple500.lpw Données Analytiques\eau savoie 1.lpw Exemple500.lpw Lau savoie 1.lpw
Enregistrer Bous C: Documents and Settings Pierre Wes documents // C: Documents and Settings Pierre Wes documents // Exemple 500.low C: Documents and Settings Pierre Wes documents // Enregistrer les valeurs initiales	bonnées Analytiques\Exemple500.lpw bonnées Analytiques\eau savoie 1.lpw txemple500.lpw au savoie 1.lpw

A I DI Win version 5.00	🕼 LPLWin version 5.00	C LPLWin version 5.00	CLPLWin version 5.17
Ficher Lavin version 200 Ficher Analyse Visualiser Rapport O: Modifier Saisr Importer Données (xis)	Fichier Analyse Vaualiser Rapport Options ? Cascade Mosaique verticale Ranger icones Fenêtre Commentaires et Conselis	Fichier Analyse Visualiser Rapport Options ? Tout Une eau	Fichier Analyse Visualiser Rapport <mark>Options ?</mark> Calcul., Unités d'entrée Unités d'entrée Incettudes Importation Pureté des réadris Langue

ichier	Analyse	Visualiser	Rapport	Options	?
					Utilisation Description Principes
					A propos de

3-1) Menu Fichier

Lorsque l'on clique sur le menu fichier et qu'aucune analyse d'eau (étape) n'est chargée à l'écran, ce menu fait apparaître 5 zones distinctes séparées par un trait horizontal :

	Sa LP	LWin version 5.00			5)
1)	Fichier Nou	Analyse Visualiser Rapport Options ? veau rrir	Ctrl+N Ctrl+O		5)
2)		ner egistrer	Ctrl+S	_	6)
3)	C:\k C:\k C:\k C:\k C:\k	Documents and Settings/Pierre/Wes documents/Exemple300.pm Documents and Settings/Pierre/Wes documents/eau savoie 1.jow Documents and Settings/Pierre/Wes documents/Exemple422.jow Documents and Settings/Pierre/Wes documents/Concentration.jow		- [7)
4)		Documents and Settings (Pierre (Wes documents (Données Analytiques) (EauDerreum 1.) pw egistrer les valeurs initiales tter		-	8)

Seules les fonctions de chargement de fichiers ou de création de nouveau fichier apparaissent ainsi que la fonction « Quitter ».

Si l'on clique sur le menu « Fichier » lorsqu'une ou deux eaux ont été chargées où saisies et suivies de calculs, les quatre fonctions d'enregistrement (en grisé sur la figure ci-dessus) sont activées.

1) Nouveau

Dans le cas où la fonction « Nouveau » est sélectionnée une feuille d'étape vierge apparaît.

sport options ?													
🗰 Eau: 1 Et	ape: 0	LF		XXXXXX									
-	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphère	Unité
Température		°C		ΣCations	-		pH	-			pH	-	
Conductivité		µS/cm		Σ Anions			Delta pH				Delta pH	-	
pH				Balance			ACaCO,	-			A CO ₂	-	
		•T		H.CO.	-		TAC	-			TAC .		
TAC		04		HCO3			HCOT				HCOT		
CO libre		mail		CO Tatal			CO27				CO27		
Calcium		mail		a a a a a a a a a a a a a a a a a a a			CO Total				CO Tatal		
Magnésium		mg/l		SatuRatio			ACO t				ACO t		
Sodium		ma/l		Type			Calcium				Saturatio		
Potassium		ma/l		SatuCO2			SatuCO2				Туре		
Ammonium	0	mg/l		Nom:	•				1	1			
Fer divalent	0	mg/l						Tracer	Impri	ner	<u>M</u> ode de	e dosage du T.	.A.C.
Manganèse	0	mg/l								_			
Chlorure		mg/l			Calculer		<u>e</u>	Traiter	Ferm	ner	Calc	ul d'incertitude	s
Sulfate		mg/l											
Nitrate		mg/l		Classe d'es	au selon la B	áalement:	ation					es et Constante	es
Nitrite	0	mg/l		610336 0 66		sgiomonia							
Fluorure	0	mg/l											
Oxygène diss.			L	Fichier:	1								

Par défaut, LPLWin fixe le numéro de l'eau à 1. Si une autre eau est déjà chargée à l'écran, LPWin fixe le numéro de l'eau à 2.

Nota : Le nombre d'eaux maximum qui peuvent être affichées simultanément est de deux. L'eau numéro 3 est réservée au résultat des mélanges d'eau.

2) Ouvrir

En cliquant sur ouvrir LPLWin fait apparaître la fenêtre de recherche des fichiers qui est utilisée dans toutes les applications Microsoft Windows. Ici, LPLWin sélectionne les fichiers dont le suffixe est .LPW.

Chargement	d'un fichier				? 🛛
Regarder dan	s : 🔁 Données Analyt	tiques	• • •		
	EauDerreum 1.lps	w			
Mes document	s				
récents					
Bureau					
Mee dogument					
Mes document	5				
Poste de trava	al .				
	Nom du fichier :			-	Ouvrir
	Fichiem de tune :	Eaking 1 DL Min (* 1 DMD			Angular
Favons reseau	Fichiers de type :	Fichiers LPL Win (.LPW)		<u> </u>	
		1 Ouvill enfecture secie			

Toutefois, on a la possibilité de sélectionner des fichiers enregistrés dans une ancienne version précédant les versions LPW.

PLWin version 5.00						
er Analyse Visualiser Rapport Opl	ions ?					
Chargement d	'un fichier				2 🛛	
Regarder dans	: 🔁 Données Analytiqu	Jes	• + E e	∲ 💷 •		
	EauDerreum 1.lpw					
Mes documents récents						
Bureau						
Mes documents						
Poste de travail						
S	Nom du fichier :			•	Ouvrir	
Favoris réseau	Fichiers de type :	Fichiers LPL Win (*.LPW)		-	Annuler	
		Fichiers LPL Win (*.LPW) Fichiers LPL (*.LPL) Fichiers CALCO (*)				
		Fichiers DB (*.IDB) Fichiers DAT (*.DAT)				

Si l'utilisateur ne souhaite pas charger un fichier déjà enregistré ou s'il ne l'a pas trouvé, il peut revenir à l'écran de base en cliquant sur le bouton « Annuler ».

Nota : La compatibilité des fichiers des précédentes versions de LPLWin est assurée dans les versions LPLWin 5.00 et suivantes.

3) Derniers fichiers utilisés

LPLWin permet de rappeler les cinq derniers fichiers utilisés qui sont affichés du plus récent au plus ancien.

4) Quitter

La sélection de cette fonction permet de quitter le logiciel en fermant toutes les étapes et les paramètres associés en sauvegardant les options de calcul et d'unités.

Une confirmation de la volonté de quitter le logiciel est demandée avant la fermeture de LPLWin.

2 E													×
-	l v	aleur Un	ité len m	me/I	Ré	sultats Uni	ité E	uilibres Ca (Ost. Mar	bre Unité E	auilibre Atr	nosphère Un	té
e	D Faur 1 Ft												
20	y, cau. i ci	upe. i										-	
H		Valeur	Unité	en me/l	1	Résultats	Unité				Equilibre	Atmosphèr	Unité
Т	Température	16,2	°C		ΣCations	6,132	me/l				pH	8,71	
Α	Conductivité	600	µS/cm	492	ΣAnions	6,132	me/l				Delta pH	1,19	
Ά	pН	7,52			Balance	0,	%				ΔCO,	-9,42	mg/l
x	тн	26,	٩f	5,2	H,CO,	14,14	mg/l				TAC	15,682	of
a	ТА		٩f		HCO ₃	190,604	mg/l				H,CO	0,866	mg/l
N a	TAC	15,682	٩f	3,136	CO3-	0,318	mg/l				HCO;	180,877	mg/l
io	CO ₂ libre	10,035	mg/l	0,228	CO ₂ Total	3,358	mM/I				CO3-	4,677	mg/l
0	Calcium	97,2	mg/l	4,86	λ	0,862					CO ₂ Total	3,057	mM/I
١n	Magnésium	4,131	mg/l	0,34	SatuRatio	1,0					∆CO ₂ t	-0,301	mM/I
e	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	14,68	
Λa	Potassium	3,315	mg/l	0,085	SatuCO2	16,33					Туре	Calcifiante	
Ch	Ammonium	1,8	mg/l	0,099	Trait.	Mise à l'équ	ilibre	ð T	-	1 1			
<u>Su</u>	Fer divalent	2,8	mg/l	0,1	Réactif	HCI			Tracer	Imprimer			
lit	Manganèse	8,25	mg/l	0,3									
lit	Chlorure	33,821	mg/l	0,953	Dose	5,975 mg/l		I PI Win			Calcu	ul d'incertitud	es
<u>-11</u>	Sulfate	62,496	mg/l	1,302	Purete	100,0 %		-	,	لکنا			
22	Nitrate	14,942	mg/l	0,241	Classe d'e	au selon la B	éalement	ation ()			Indice	s et Constan	tes
Т	Nitrite	4,6	mg/l	0,1	Classe d e		egiomoni		Sortie d	e l'application ?			
Т	Fluorure	6,8	mg/l	0,4				_ `					
	Oxygène diss.	9,85	mg/l	100,0	Fichier:	C:\Docum	ients and	Sett		No. 1	ents Profession	nels\Don	

Si les calculs relatifs à une ou plusieurs eaux n'ont pas été sauvegardés, le message de confirmation le message rappelle cet état de fait.

	Va	aleur Un	ité en r	ne/i	Rés	ultats Un	ité Ec	uilibres Ca	a Cst Marb	re Unité Er	uilibre Atr	nosobère Uni	é
Te	1 F 4 F4					unato jon		Cambred Tex	root. maro		tomore liver		
Co	go Lau. I Lu	ape. i			~~~~~							-	
рH		Valeur	Unité	en me/l		Résultats	Unité				Equilibre	Atmosphère	Unité
T⊦	Température	16.2	°C		ΣCations	6,132	me/l				pH	8.71	
ΓA	Conductivité	600	uS/cm	492	ΣAnions	6,132	me/l				Delta pH	1,19	
ΓA	pН	7,52			Balance	0,	%				ΔCO,	-9,42	mg/l
20	тн	26,	٥f	5,2	H.CO	14,14	mg/l				TAC	15,682	of
Ca	TA		٩f		HCO;	190,604	mg/l				H,CO	0,866	mg/l
Vla	TAC	15,682	٩f	3,136	CO3-	0,318	mg/l				HCO;	180,877	mg/l
<u>So</u>	CO ₂ libre	10,035	mg/l	0,228	CO ₂ Total	3,358	mM/I				CO3-	4,677	mg/l
20	Calcium	97,2	mg/l	4,86	λ	0,862					CO ₂ Total	3,057	mM/I
λn	Magnésium	4,131	mg/l	0,34	SatuRatio	1,0					∆CO ₂ t	-0,301	mM/I
e	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	14,68	
Ma	Potassium	3,315	mg/l	0,085	SatuCO2	16,33					Туре	Calcifiante	
Ch	Ammonium	1,8	mg/l	0,099	Trait.	Mise à l'équ	aiibre						
Su	Fer divalent	2,8	mg/l	0,1	Réactif	HCI .			Tracer	Imprimer			
Vit	Manganèse	8,25	mg/l	0,3									
Vit	Chlorure	33,821	mg/l	0,953	Dose	5,975 mg/l		L DI W	in		C C C	ul d'incertitude	:s
٦L	Sulfate	62,496	mg/l	1,302	Pureté	100,0 %		_					
Dx	Nitrate	14,942	mg/l	0,241	Classe d'au	u colon la D	éalamant		Env 1 mm	enuerandéa	C#	is et Constant	es.
	Nitrite	4,6	mg/l	0,1	Ciasse diea	su sción la h	regiement		Sortie de	l'application tout d	le même ?	e et e briddak	
	Fluorure	6,8	mg/l	0,4				- ·	00/00 00	roppicouori couco			
	Oxygène diss.	9,85	mg/l	100,0	Fichier:						1		

5) Fermer

Cette fonction permet de fermer l'étape sélectionnée ainsi que les éventuelles étapes suivantes si elle(s) a (ont) été préalablement enregistrées. Sinon, un message d'alerte rappelle l'absence d'enregistrement.

Fichi	er Analy	yse Visualiser	Rapport (Options	?										
Þ			LPWI										_		
E	🗊 Eau													. • ×	
Te		Valeur	Unité	en me/l		Résulta	ats Unité					Equilib	ne Atmos	hère Unité	
p⊦	Tempé	D Faur 1 Ft	2001.3			~~~~									
TH	Condu	U Lau. I Lu	ape. z	L.		~~~~~								-	
14	ты		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unité
14	ТА	Température	16,2	°C		Σ Cations	6,032	me/l	pH	7,53	7,5		pH	8,69	
CC	TAC	Conductivité	592	µS/cm	486	ΣAnions	6,032	me/I	Delta pH	0,18	0,15		Delta pH	1,35	
<u>C</u> 2	COLIN	pH	7,35			Balance	0,	%	ACaCO ₃		8,27	mg/l		-13,724	mg/l
M	Caldu	TH	26,	٩f	5,2	H,CO,	20,205	mg/l	TAC	15,182	16,013	٩f	TAC	15,182	of
50	Magné	TA		٩f		HCO;	184,747	mg/l	H,CO,	13,302	15,2	mg/l	H _{CO}	0,866	mg/l
100	Sodium	TAC	15,182	٩f	3,036	CO3-	0,209	mg/l	HCO;	184,507	194,616	mg/l	HCO;	175,395	mg/l
Ar	Potoes	CO ₂ libre	14,339	mg/l	0,326	CO, Total	3,358	mM/I	CO3-	0,316	0,309	mg/l	CO3-	4,392	mg/l
-re	Ammo	Calcium	97,2	mg/l	4,86	λ	0,912		CO ₂ Total	3,245	3,441	mM/I	CO ₂ Total	2,962	mM/I
ME	Fer div	Magnésium	4,131	mg/l	0,34	SatuRatio	0,66		∆CO₂t	-0,113	0,083	mM/I	∆CO₂t	-0,396	mM/I
	Manga	Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,2	100,508	mg/l	Saturatio	13,86	
51	Chloru	Potassium	3,315	mg/l	0,085	SatuCO2	23,34		SatuCO2	15,36	17,56		Туре	Calcifiante	
INF	Sulfate	Ammonium	1,8	mg/l	0,099	Trait,	Aération-Déf	ferri,	à	-	1	. 1			
	Nitrate	Fer divalent		mg/l		Réactif	Air (02)			Tracer	Įmpr	imer			
-	Nitrite	Manganèse	8,25	mg/l	0,3										
	Fluoru	Chlorure	33,821	mg/l	0,953	Dose 02	,40 mg/l		4	Traiter	Fen	ner	Calci	al d'incertitude	ts 🛛
	Onve	Sulfate	62,496	mg/l	1,302										
	1011/90	Nitrate	14,942	mg/l	0,241	Classe de	au calas la P.	ا مع مع ا	tion Failà	l'équilibre (ot	Indice	s et Constant	res l
		Nitrite	4,6	mg/l	0,1	Cidase de	au seioinia o	DI 14/6-							
		Fluorure	6,8	mg/l	0,4			PLWIN							
		Oxygène diss.	9,85	mg/l	100,0	Fichier:	Exemple								
		Unités d'E	ntrée Un	ités de S	ortie			\mathbf{X}	L'eau numén	o 1 et ses	étapes n'or	it pas été	sauvées. Fen	mer quand mi	ime ?
											u .	Non			
							_								

6) Enregistrer

Cette fonction permet d'enregistrer les modifications apportées à un fichier. Cet enregistrement ne porte que sur l'eau sélectionnée quelle que soient l'étape sélectionnée (en subrillance à l'écran). Si l'eau a été saisie pour la première fois LPLWin demande à l'utilisateur d'indiquer le nom du fichier, il peut alors choisir le répertoire dans lequel il souhaite placer le fichier.

7) Enregistrer sous...

Cette fonction permet de modifier le nom du fichier (s'il s'agit d'un fichier rappelé et modifié) ou de le créer. Il est alors possible de choisir et changer éventuellement le répertoire où le fichier sera enregistré.

8) Enregistrer les valeurs initiales...

Cette fonction est spécifique de LPLWin. LPLWin est fourni avec deux analyses types (par défaut) qui peuvent être rappelées à partir du menu « Analyse » « Modifier » (voir la rubrique correspondante). Mais ces analyses peuvent être modifiées par la présente fonction. Celle-ci permet d'enregistrer les données saisies, de l'analyse de l'eau sélectionnée, pour être utilisées ultérieurement dans le sous-menu « Modifier ». L'appelle de cette fonction entraine l'apparition d'une fenêtre de choix du numéro de l'eau dans laquelle les valeurs vont être chargées.

Si deux eaux différentes sont à l'écran, il est possible d'enregistrer ces deux analyses qui deviendront les nouvelles analyses types (par défaut).

Il convient de signaler que ce sont les données de l'étape 0 (données saisies ou provenant d'un fichier existant) qui sont enregistrées sans les résultats des calculs et traitements éventuels.

Une fois que l'eau est choisie, le clic sur le bouton enregistrer entraîne une demande de confirmation car les précédentes données analytiques seront définitivement perdues.

💭 Eau: 1 E	tape: 0	(LPLWin -								-	
	Valeur	Unit						Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	°C	- Valeu	rs initiales par défaut				7,55		pH	8,73	
Conductivité	600	μS/c				F 11		-0,45		Delta pH	0,73	
pН	8		6	Eau1		Enregistrer		-13,755	mg/l		-2,821	mg/l
тн	c 26,	٩f						15,129	٩f	TAC	16,5	٩f
ТА		٩f	(🖱 Ea <u>u</u> 2				12,541	mg/l	H,CO	0,866	mg/l
TAC	16,5	٩f						183,775	mg/l	HCO;	189,87	mg/l
CO ₂ libre	c 0,078	me/	(🖱 Eau1 eţEau2		Annuler		0,332	mg/l	CO3-	5,154	mg/l
Calcium	4,86	me/			_			3,22	mM/I	CO ₂ Total	3,212	mM/I
Magnésium	0,34	me/						-0,138	mM/I	∆CO₂t	-0,146	mM/I
Sodium	0,347	me/						91,698	mg/l	Saturatio	16,17	
Potassium	0,085	me/I	0,085	SatuCO2 5,59		SatuCO2	18,08	14,48		Туре	Calcifiante	
Ammonium	1,8	mg/l	0,097	Nom:	_	an i		1	1			
Fer divalent	0,1	me/I	0,1	1			Tacet	Impri	mer	Mode de	dosage du '	ſ.A.C.
Manganèse	0,3	me/I	0,3							-		
Chlorure	0,789	me/I	0,789	Calculer	Lp	olWin502					🔣 ud	BS
Sulfate	1,302	me/I	1,302			_					_	_
Nitrate	0,241	me/I	0,241	Classe d'agu salan la Ráde		Atte	ntion !				ran	tes
Nitrite	0,1	me/I	0,1	Classe dieau Seluri la Negli	SILIC	Voul	ez-vous v	raiment écr	aser les v	aleurs précéd	lentes ?	
Fluorure	0,4	me/I	0,4									
Oxygène diss	c 9,85	mg/l	100,0	Fichier:			0	ui	Non			
Fluorure Oxygène diss	0,4 c 9,85	me/l	0,4	Fichier:			0	ui	Non			

3-2) Menu Analyse

 1)
 Fichier
 Analyse
 Visualiser
 Rapport
 Options
 ?

 2)
 Modifier...
 Saisir...
 Importer Données (xls)

 3)
 Importer Données (xls)

Le menu « Analyse » comporte trois fonctions :

1) Modifier

Cette fonction permet de rappeler les données d'une des deux eaux types (par défaut) fournies avec le logiciel ou enregistrées par l'utilisateur comme indiqué au menu « Fichier » (8). Il convient de choisir le numéro de l'eau à modifier (Eau 1 ou Eau 2).

r Analyse Visualiser	Rapport Options	?
1	LPLWin	
	Choix d'eau C Eau 1 C Eau 2 C Eau 3	Le programme LPL permet de travailler avec plusieus analyses simultanément, on utilise un numério d'eau pour les différencier.

Ce choix étant fait le tableau de saisie apparaît.

🗊 Eau: 1 Et	ape: 0	LPWIN XX	XXXXXXX			
	Valeur	Unité en me/l	Résultats Unité	Equilibres Ca Cst.	Marbre Unité	Equilibre Atmosphère Ur
Température	16,2	°C	ΣCations	pH		pН
Conductivité	560,	µS/cm	ΣAnions	Delta pH		Delta pH
pН	7,25		Balance	ACaCO,		Δ CO ₂
TH	26,	of	H _{CO}	TAC		TAC
TA		of	HCO;	HCO,		H,CO,
TAC	16,5	of	CO3-	HCO;		HCOT
CO ₂ libre	19,569	mg/l	CO, Total	CO3-		COB
Calcium	97,2	mg/l	λ	CO ₂ Total		CO ₂ Total
Magnésium	4,131	mg/l	SatuRatio	∆CO₂t		∆CO₂t
Sodium	7,981	mg/l	Туре	Calcium		Saturatio
Potassium	3,315	mg/l	SatuCO2	SatuCO2		Туре
Ammonium	1,	mg/l	Nom:	2	· · · [
Fer divalent	0,5	mg/l	,	Lacer	Imprimer	Mode de dosage du LA.U
Manganèse	0,5	mg/l	1			
Chlorure	28,01	mg/l	<u>C</u> alculer	Iraiter	F <u>e</u> rmer	Calcul d'incertitudes
Sulfate	62,496	mg/l				
Nitrate	14,942	mg/l	Classe d'eau selon la Béglementai	tion		Indices et Constantes
Nitrite	1,1	mg/l				
Fluorure	1,	mg/l				
Oxygène diss.	8,00	mg/l	Fichier:			

L'utilisateur peut alors modifier les valeurs comme il l'entend ainsi que les unités. Puis il peut lancer le calcul (voir chapitre « Etude de la feuille de calcul »).

2) Saisir

Cette fonction fait apparaître la feuille de calcul vierge. Il convient comme précédemment de choisir le numéro de l'eau (Eau 1 ou Eau 2).

Il convient de remarquer que les valeurs des paramètres mineurs (Ammonium, Fer divalent, Manganèse, Nitrite et Fluorure) sont fixées par défaut à zéro pour permettre de calculer la balance ionique si l'on ne dispose pas de ces valeurs.

💭 Eau: 1 Et	ape: 0	LPWIN XX	XXXXXXX				
	Valeur	Unité en me/l	Résultats Unité	Equilibres	Ca Cst	Marbre Unité	Equilibre Atmosobère
Température	o ano an	°C	ΣCations	pH	Ca Cot.	marbio onico	oH
Conductivité		uS/cm	ΣAnions	Delta pH			Delta pH
pH			Balance	ΔCaCO,			ΔCO,
TH		of	H.CO.	TAC			TAC
TA		of	HCO;	H,CO,			H,CO
TAC		of	CO;	HCO;			HCO;
CO ₂ libre		mg/l	CO, Total	0031			CO
Calcium		mg/l	λ	CO ₂ Total			CO, Total
Magnésium		mg/l	SatuRatio	∆CO₂t			∆CO₂t
Sodium		mg/l	Туре	Calcium			Saturatio
Potassium		mg/l	SatuCO2	SatuCO2			Туре
Ammonium	0	mg/l	Nom:	æ	_	1 1	
Fer divalent	0	mg/l	,	B		Imprimer	Mode de dosage du T.A
Manganèse	0	mg/l					
Chlorure		mg/l	<u>C</u> alculer		<u>T</u> raiter	F <u>e</u> rmer	Calcul d'incertitudes
Sulfate		mg/l					
Nitrate		mg/l	Classe d'eau selon la Béglementation	n			Indices et Constante
Nitrite	0	mg/l					
Fluorure	0	mg/l					
Oxygène diss.			Fichier:				

Les unités sont celles qui ont été définies par l'utilisateur dans le menu « Options » « Données d'entrée... ». Elles sont modifiables pour chaque paramètre.

3) Importer Données (xls)

Cette opération est maintenant possible dans la version 5 de LPLWin. Elle permet d'importer directement des valeurs à partir d'un tableau de données établi sous Microsoft Excel. Ce tableau doit respecter un minimum de règles pour pouvoir être utilisé.

Structure du fichier Excel :

Le fichier Excel doit comporter au moins 20 groupes² de 3 champs présentés en 3 lignes ou en 3 colonnes. Chaque groupe de 3 champs caractérise un des 20 paramètres de l'analyse : nom, unité, valeur.

Noms des paramètres

Les noms des paramètres doivent figurer sur une même ligne ou colonne.

Les paramètres nécessaires sont ceux qui figurent sur la feuille de saisie de LPLWin et sont les suivants :

Température	Potassium
рН	Ammonium
Conductivité / Résistivité	Fer divalent
Dureté	Manganèse
CO ₂ libre	Chlorure
Titre Alcalim. Simple (TA)	Sulfate
TAC	Nitrate
Calcium	Nitrite
Magnésium	Fluorure
Sodium	Oxygène dissous

Si l'on ne connaît pas certaines concentrations telles que NH_4 , Fer divalent, Manganèse, Nitrite, Fluorure ou encore Oxygène dissous, il conviendra de remplacer les valeurs manquantes par des zéros (0). Le TAC est obligatoirement saisi. Le calcium peut ne pas être saisi si le TH et le Magnésium sont donnés, il sera alors calculé par différence entre ces deux paramètres. Pour ce qui est du pH, du TA et du CO₂ libre, une seule des trois valeurs est nécessaire et les autres peuvent rester vides.

L'ordre dans lequel les champs sont ordonnés n'a pas d'importance.

Les intitulés des champs « paramètres » reconnus par LPLWIN sont donnés dans le tableau I. Il est donc préférable de nommer les champs paramètres par un nom de la liste. Toutefois, il est possible d'utiliser un autre nom, mais il sera alors nécessaire d'identifier manuellement les champs non reconnus automatiquement, ce qui ralenti la procédure d'importation et la rend fastidieuse. Il est aussi possible de préciser ces noms de paramètres dans le menu « Options » « Importation ».

² Pour les versions 5.00 jusqu'à 5.12 qui ne prennent pas en compte l'oxygène dissous, le nombre minimum de groupes est de 19.

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.**18**/136

Paramètre				Intitulés reco	onnus par Ll	PLWIN		
Température	Т	Temp	Temp	Température	température	Temperature	temperature	
Conductivité	C	Cond	Conduc	Conductivité	Conductivity	R	Résistivité,	Resistivity
ou résistivité								
pH	pН	pH Value	pH value					
Dureté	TH	Dureté	Tot. Hard	Hardness				
Alcalinité simple	TA	Alcalinité Simple	S. Alk.	Simple Alkalinity				,
T.A.C.	TAC	Alcalinité Totale	Total Alkalinity	Tot. Alk.				,
CO2 libre	CO21	CO2 libre	CO2 Libre	Free CO2				
Calcium	Ca	Ca2+	CA	Calcium	calcium			
Magnésium	Mg	Mg2+	MG	Magnésium	magnésium	Magnesium	magnesium	
Sodium	Na	Na+	NA	Sodium	sodium			
Potassium	K	K+	k+	Potassium	potassium			
Ammonium	NH4	NH4+	NH4T	Ammonium	ammonium	Ammoniaque	Ammonia	
Fer divalent	Fe2+	FeII	FE	Fer Div	Fer Divalent	Iron II		
Manganèse	Mn	Mn2+	MnII	MN	Manganèse	manganèse	Mangan	
Chlorure	Cl	Cl-	CL	Chlorure	Chlorures	Chloride		
Sulfate	SO4	SO42-	Sulfate	Sulfates	sulfate	Sulphate		
Nitrate	NO3	NO3-	Nitrate	Nitrates	nitrate	nitrates		
Nitrite	NO2	NO2-	Nitrite	Nitrites	nitrite	nitrites		
Fluorure	F	F-	Fluorures	Fluorure	Fluor	fluor	Fluoride	Fluorine
Oxygène dissous	02	Oxygène	Oxygène D.	Ox. Diss.	oxygène	oxygen	Oxygen	D.O.

Tableau I

<u>Les unités</u>

Les valeurs des divers paramètres n'ayant de signification que si elles sont étroitement liées à des unités, il est indispensable de s'assurer que celles-ci sont bien définies et compatibles avec celles utilisées par le logiciel. Ainsi, le tableau doit nécessairement comporter sur une autre ligne ou colonne les unités dans lesquelles sont exprimés les résultats. Les unités utilisées doivent impérativement être celles qui sont définies dans la procédure générale est qui sont rappelées dans le tableau II. Leur expression doit être celle qui est utilisée par LPLWin. Toutefois, si leur dénomination n'est pas conforme, le logiciel peut reconnaître quelques variantes qui sont fournies dans le tableau II page suivante. On peut bien sûr nommer les unités différemment mais il faudra alors identifier manuellement chaque champ unité dans le tableau de correspondance qui s'affichera si LPLWin ne les a pas reconnues.

Température	Conductivité	Titres	Concentrations	Oxygène	Concentration	Concentration
			des ions (hors	dissous	de Ca	de Mg
			Ca et Mg)			
°C	μS/cm	°f ou	mg/l	mg/l	mg/l	mg/l
		°F				
°F	Ohm.cm	°D	me/l	% Sat	me/l	me/l
		ppm	mM/l		mM/l	mM/l
		CaCO ₃				
		me/l			°f	°f
					°D	°D
					ppm CaCO3	ppm CaCO3

Tableau II

La version 5.17 et les suivantes comportent dans le menu « Options », une possibilité de choisir les intitulés des paramètres et des unités correspondant aux besoins de l'utilisateur et de les conserver. Le fichier Excel peut se présenter par exemple comme le montre la figure 1 avec les données en 3 lignes (A) ou en 3 colonnes (B).

nicros	OIC EXCOL-														
Eichier	r <u>E</u> dition	<u>A</u> ffichage <u>I</u> nsert	on Forma <u>t</u>	Qutils Do	nnées Fe <u>n</u> êt	re <u>?</u>								Тар	ez une question
¥ [3 🔒 🛛	۱ 🕰 🖑 📖 ۱	l 🗈 🚨 • 🕬	3	(~ - 🔀 😫	Σ·Ž↓Ž↓	🛍 🍪 🛛 🍟	Arial	- 10	- G I	s∣≣ ≡		9% 000	€ 00 3	8 🛊 🛊 🛙
12 12	bi 🖾 💿	🖄 🖾 🏷 💈	🖣 🔂 🕬	Répondre e	n in <u>c</u> luant des n	nodifications Ter	mi <u>n</u> er la révision	📮 🗄 📴 Accéder á	Office Live	Duvrir • Enre	gistrer 🔹 🖕				Couleur de
T5	-	fx													
Α	B	C D	E	F	G H	H	J K	L M	N	0	P	Q R	S	T	U
mp `	Conduc uS/cm	cpH IH ⁰f	IA of	IAC C	CO2I Ca	Mg N	a K	NH4 Fell	Mn mg/l	CI S	04 NO	3 NO2	F ma/l	02 % Sat	
, 16	6.3 52	20 8	26	16.5	ng/i mg/i	97 4.1	8 3.	3 8.5	1 0.2	2 29	19/1 H19/ 62	15 1	1.5 4.	75 75	
	25 84	44 5,27	-	0,1582	15,85	1,44 4,66	153,5 7,2	3 0	0 0	250	10,7	0,05	0 0,	03	85
					1	A- Do	nnées e	en ligne	e (exe	mple	;)				
								B-							
Mic	rosoft Exc	cel - Essailmport	1.xls												
5	ichier <u>E</u> diti	ion <u>A</u> ffichage <u>I</u> r	sertion Form	na <u>t O</u> utils	<u>D</u> onnées F	Fe <u>n</u> être <u>?</u>									Tapez une q
	2 🔲 🛆	📑 🐧 🖑 🛱	. 🐰 🗈 🛍	- 🛷 🖉) - (2 - 🕃	🖥 🤶 Σ - 🧎	X 🛍 🛷 -	Arial	-	10 - G	IS	E B B	ā 🕎	% 000 €	*,0 ,00 F
	1 21 21	© ≥ 15 5	🔊 🖣 😥	₩ ∉ Répon	dre en ingluant	des modifications.	. Terminer la révi	sion 📕 👯 🗛	céder à Office L	Live Ouvrir	Enregistre	· •			
ک لے 8 🛋 H		©⊠ 55 • ¢	2 % (2	V ∜ Répon	dre en ingluant	des modifications.	. Termi <u>n</u> er la révi	sion 🖕 🤅 📴 Aci	céder à Office l	Live Ouvrir •	Enregistre	•			
	127 A	രം ഉല്ത്ര് ▼ ക B	C	Prev Répon	dre en ingluant	des modifications.	. Termi <u>n</u> er la révi	sion 💂 🤅 🔂 Ao	céder à Office L	Live Ouvrir	Enregistre		L	М	N
H	127 A mpera	© ≥ S S B degrés C	C 16,3	₩¥ Répon	dre en ingluant	des modifications.	. Terminer la révi	sion 💂 🤅 🏤 Ao	céder à Office l	Live Ouvrir	Enregistre K	r • ₅	L	M	N 1
H H Co	I27 A mpera onduc	© ∑ 5 δ ★ β degrés C μS/cm	C 16,3 520	V v Répon	dre en ingluant	des modifications.	. Terminer la révi	sion 💂 i 强 Acc	céder à Office L	Live Ouvrir	Enregistre	r• ,	L	Μ	N 1 52
H ter Co	A mpera onduc	₩ 2 5 5 B degrés C µS/cm PRM CacO3	C 16,3 520 8 260	P v Répon D	dre en ingluant	des modifications.	G G	ion 📕 🤅 🔁 Ac	céder à Office I	Live Ouvrir •	K	r• <u>-</u>		M	N 1 52
H ter Co PH	A mpera onduc 1 1	B degrés C µS/cm PPM CaCO3	C 16,3 520 8 260	₩∂ Répon D	dre en ingluant E	des modifications.	. Termi <u>p</u> er la révi	ion , En Ao	céder à Office I	Live Ouvrir •	K			M	N 1 52 26
H ter Co PH TH TA	A A mpera onduc 1 1 A A A A	B degrés C µS/cm PPM CaCO3 ff pom CaCO3	C 16,3 520 8 260 165) ♥√ Répon D	dre en ingluant	F	. Termi <u>p</u> er la révi	H	céder à Office I	Live Ouvrir	K			M	N 1 52 26
H ter Co PH TH TA TA	A mpera onduc 1 1 A AC alci	B B b b c c m c c c m c c c c c c c c c c c	C 16,3 520 8 260 165 97	J ¥∛ Répon D	dre en ingluant	des modifications.	G G	H	céder à Office I	Live Ouvrir •	K			M	N 1 52 26 18 10
H ter Co PH TH TA TA Ca Na	A mpera onduc 1 1 A A C alci	B degrés C µS/cm PPM CaCO3 ff ppm CaCO3 Mg/l mg/l	C 16,3 520 8 260 165 97 8	D ¥v∂ Répon	dre en ingluant	F	. Terminer la révi	ion j 🗄 强 Ao	céder à Office I	Live Ouvrir •	K			M	N 1 52 26 18 10
H ter Co pH TH TH TA TA TA Ca Na Na Q Mg	A mpera onduc 1 1 4 A A C alci a 9	φ φ β degrés C μS/cm PPM CaCO3 °f ppm CaCO3 Mg/l mg/l	C 16,3 520 8 260 165 97 8 4,1	D P	dre en ingluant	des modifications.	. Termiger la révi	ion ₅ i ∰ Ao	céder à Office I	J J	K			M	N 52 26 18 10 4,
H 1 ter 2 Co 3 pH 5 TA 5 TA 6 TA 7 Ca 3 Na 9 Mg 0 K	A mpera onduc 1 1 4 A A C alci a 9	β B degrés C μS/cm PPM CaCO3 °f ppm CaCO3 Mg/l mg/l mg/l	C 16,3 520 8 260 165 97 8 4,1 3,3	D P	dre en ingluant	des modifications.	, Termiger la révi	ion , E : : : : : : : : : : : : : : : : : :	céder à Office L	J J	K			M	N 1 52 26 18 10 10 4, 3,
H 1 ter 2 Co 3 pH 4 TH 5 TA 6 TA 7 Ca 3 Na 9 Mg 0 K	A A mpera mpera mpera a d A A A A A A A A A A A A A	A B degrés C µS/cm PPM CaCO3 f ppm CaCO3 f mg/l mg/l mg/l MG/L	C 16,3 520 8 260 165 97 8 4,1 3,3 15	D ♥	dre en ingluant	des modifications.	. Termiger la révi	ion g <u>i ∰</u> Ac	céder à Office L	Live Ouvrir •	K			M	N 1 52 26 18 10 4, 3, 1
H H C Co B PH T TH 5 TA 5 TA 7 Ca 8 Na 8 Na 9 Mg 0 K 1 NC 2 CC 2 CC 2 N	A mpera onduc 1 1 A A A C alci a 9 O 3 O 2 1	★ K B degrés C µS/cm PPM CaCO3 *f ppm CaCO3 Mg/l mg/l mg/l mg/l MG/L mg/l mg/l	C 16,3 520 8 260 165 97 8 4,1 3,3 15 2,5 2,5 2,5 2,5 2,5 2,5 2,5 2,	¥∛Répon	dre en ingluant	F	, Termiger la révi	ion 5 193 Ac	céder à Office l	J	K			M	N 1 52 26 18 10 4, 3, 1
H 1 ter 2 Co 3 pH 4 TH 5 TA 5 TA 6 TA 7 Ca 3 Na 9 Mg 0 K 1 NC 2 CC 3 NH	A mpera onduc 1 1 A A A A A A C alci a a g D 2 3 D 2 1 1 4	B B degrés C µS/cm PPM CaCO3 f ppm CaCO3 Mg/l mg/l mg/l MG/L mg/l mg/l mg/l	C 16,3 520 8 260 165 97 8 4,1 3,3 15 8,5 8,5 14,5	₩∂Répon	dre en ingluant	des modifications,	, Termiger la révi	ion j ∷ B Ac	céder à Office L	J	K			M	N 1 52 26 18 10 4, 3, 1 1 8, 8, 1
H H C Co B PH TH T TA T Ca B Na B Mg C C C B Na B Mg C C C C C C C C C C C C C C C C C C C	A mpera onduc 1 1 A A A C C alci a a g D D 3 D 2 2 1 - 4 4 D 2 2 2 1 - 4 - 4 - 2 2 - 1 - - - - - - - - - - - - - - -	β B degrés C μS/cm PPM CaCO3 °f ppm CaCO3 mg/l	C 16,3 520 8 260 165 97 8 4,1 3,3 15 8,5 11,5 4,76 4,776 4,7776 4,7776 4,776 4,7776 4,7776 4,7776 4,776 4,776 4,777	♥₽Répon	dre en ingluant	des modifications.	G G	ion 5 193 Ac	l	J	K			M	N 1 52 26 18 10 4, 3 1 1 8 8 11
H H 1 ter 2 Co 3 pH 4 TH 5 TA 6 TA 6 TA 6 TA 6 TA 6 TA 6 TA 7 Ca 3 Na 9 Mg 1 NC 2 CO 1 NC 2 CO 2 CO 3 PH 4 TH 5 TA 6 CO 3 NA 9 NG 6 CO 1 NC 2 CO 2 CO 3 PH 4 TH 5 TA 6 CO 3 NA 9 NG 6 CO 1 NC 2 CO 3 CO 4 TH 5 TA 6 CO 3 NA 9 NG 6 CO 1 NC 2 CO 2 CO 3 DH 4 TH 5 TA 6 CO 3 NA 8 CO 3 NA 8 CO 1 NC 6 CO 5 CO 5 CO 1 NC 6 CO 5 CO 1 NC 6 CO 5 CO 1 NC 6 CO 5 CO 1 NC 6 CO 1 NC 6 CO 5 CO 5 CO 1 NC 6 CO 1 NC 6 CO 1 NC 6 CO 1 NC 6 CO 1 NC 6 CO 1 NC 7 CO 1 NC 7 CO 1 NC 7 CO 5 CO 1 NC 7 CO 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC 1 NC	A mpera onduc 1 1 A A C C C C C C C C C C C C C C C C	K B degrés C µS/cm PPM CaCO3 °f ppm CaCO3 Mg/l mg/l mg/l	C 16.3 520 8 260 165 97 8 4.1 3.3 15 8 55 11.5 4.75 62 62 62 62 62 62 62 62 62 62	D P	dre en ingluant	des modifications,	G G	ion j ∷ 🕄 Ac	I	J	K			M	N 1 52 26 10 4, 3, 3, 1 1 1 1 1 1 8, 8, 8, 11, 11, 14,7
H 1 ter 2 Coo 3 pH 4 TH 5 TA 6 TA 6 TA 7 Ca 8 Na 9 Mg 0 K 1 NC 2 ON 4 NC 5 FIL 6 SC 7 Cl	A mpera onduc 1 1 A A C alalci a g g O 3 O 21 1 4 4 O 22 1 4 4 O 22 1 4 4 O 22 0 4	B B Gegrés C µS/cm PPM CaCO3 f ppm CaCO3 f mg/l	C 16,3 520 8 260 165 97 8 4,1 3,3 15 8,5 11,5 4,75 62 29	D P	dre en ingluant	des modifications,	G	ion	l	J	K			Μ	N 1 52 26 18 10 10 10 10 10 10 10 10 10 10 10 10 11 11
H H C C C C C C C C C C C C C C C C C C	A A A A A A A A A A A A A A	β β B degrés C μS/cm PPM CaCO3 γ g/l mg/l mg/l	C 16.3 520 8 260 260 260 7 97 8 4.1 3.3 15 15 8.5 11.5 62 29 0.2	D D	dre en ingluant	des modifications,	Termiger la révi	ion	I	J	K			M	N 1 52 26 18 10 4, 3, 11 4,7, 6, 2 0,0
H H H H C C C C C C C C C C C C C C C C	A mpera onduc 1 1 4 A A C alci a a 9 9 03 021 14 202 u u D 4 4 n n	β β B degrés C μS/cm PPM CaCO3 *f ppm CaCO3 Mg/l mg/l mg/l mg/l	C 16,3 520 260 260 260 165 97 8 8 4,1 15 15 4,75 62 29 0,2 1	D	dre en ingluant	des modifications,	Terniper la révi	ion	I	J	K			M	N 1 52 26 18 10 4, 3 3 1 1 5 2 6 6 2 2 0 0
H 1 ter 2 Cod 3 pH 4 TH 5 TAA 6 TAA 7 Ca 8 Na 9 Mç 10 K 11 CC 13 NH 14 NCC 15 Flu 16 SC 77 Cl 13 NH 14 NCC 15 Flu 16 SC 17 Cl 10 SC 10 SC 1	A A A A A A A A A A A A A A A A A A A	φ β B degrés C μS/cm ppm CaCO3 f g/l mg/l mg/l mg/l mg/l	C 16.3 520 8 260 6 16.5 97 8 4.1 3.3 3.3 15 8.5 11.5 62 299 0.2 29 9 0.2 1 8	D	dre en ingluant	des modifications, F	Termiger la révi	ion	I		K			M	N 1 52 18 10 4 4 3 3 1 1 1 1 1 4 7, 6 2 0,

Figure 1

Pour les unités des éléments mineurs (fer divalent, manganèse, ammonium, nitrite et fluorure), à partir de la version 5.20, LPLWin accepte les microgrammes (μ g/l) qui sont convertis automatiquement en mg/l lors de l'importation.

D'autre part, lorsque la valeur d'un paramètreest inférieure au seuil de quantification, cette donnée peut être mentionnée dans le fichier Excel par le signe « < » (par exemple : < 2). La version 5.20 de LPLWin permet de tranformer automatiquement lors de l'importation cette indication en « 0 ». elle sera utilisée par le logiciel lors des calculs.

Procédure d'importation avec LPLWIN

1•) Choix du fichier

Lorsque l'on clique sur « Importer Données (xls) »La boîte de dialogue de sélection de l'eau choisie apparaît :

Après avoir sélectionné l'eau cliquer sur « OK », la boîte de dialogue de choix du fichier apparaît :

Chargement d'	un fichier			? 🔀	Chargement d'un fichier	? 🔀
Regarder dans : Mes documents récerts Bureau Mes documents Mes documents	Données Analytiqu Essailmport1.xls Essailmport2.xls Import2.xls Drupt1.xls	es	- ← È 삼 ∰•		Regarder dans : Donnees Analytiques Regarder dans : Donnees Analytiques Mes documents Bureau Mes documents Poste de travail Poste de travail	
Favoris réseau	Nom du fichier : Fichiers de type :	Fichiers MSExcel (*.XLS)	- [Ouvrir Annuler	Nom du fichier : Image: Construction of the section of t	Ouvrir Annuler

Cette interface est générale à tous les logiciels sous Microsoft Windows. A partir de la version 5.27, LPLWin permet d'importer les données de fichiers Excel 2003 (.xls) et aussi dd fichiers Excel 2010 (.xlsx). Pour passer d'un type de fichiers à l'autre il convient de cliquer sur la flèche indiquée sur la figure ci-dessus et de sélectionner l'extension souhaitée.

Une fois le fichier sélectionné, cliquer sur « Ouvrir » ou bien double-cliquer sur le nom du fichier.

2•) Choix de la feuille de calcul et validation du format des enregistrements

La boite de dialogue « Préparation à l'importation » apparaît. Dans cette boite figurent les informations indispensables pour que LPLWIN puisse importer les données souhaitées :

Un rappel du nom du fichier permet à l'utilisateur de vérifier l'exactitude de la sélection du fichier souhaité (rectangle bleu sur la figure ci-dessous) ;

Deux boutons (ovale bleu sur la figure ci-dessous) permettent de définir si les données sont sur une ligne (1^{ère} option) ou sur une colonne (2^{ème} option) ; l'option « Données sur une ligne » est activée par défaut ;

Le nombre de champs (noms de paramètres) est fixé à 19 par défaut (nombre minimum de données nécessaires). Il peut être modifié, si nécessaire, pour que LPLWIN puisse balayer plus de champs du tableau comportant les valeurs des paramètres ;

Le numéro de ligne ou de la colonne où sont enregistrés les noms des paramètres (légendes) doit être précisé. Il est, par défaut, fixé à 1. Afin de faciliter le repérage des colonnes qui sont généralement définies par des lettres, LPLWIN reconnaît indifféremment les lettres (A, B, C,... AA, AB, AC...) et les nombres (1, 2, 3,... 27, 28, 29...). Les coordonnées alphabétiques peuvent être saisies en majuscules ou en minuscules ;

Le numéro de ligne ou de la colonne où sont enregistrés les noms des unités de chaque paramètre doit être précisé. Il est, par défaut, fixé à 2 (ligne/colonne suivant celle des noms de paramètres). Afin de faciliter le repérage des colonnes qui sont généralement définies par des lettres, LPLWIN

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.21/136 reconnaît indifféremment les lettres (B, C, D,... AA, AB, AC...) et les nombres (2, 3, 4,... 27, 28, 29...). Les coordonnées alphabétiques peuvent être saisies en majuscules ou en minuscules ;

Le numéro de ligne ou de la colonne où sont enregistrées les données numériques de l'eau à étudier, doit être précisé. Il est, par défaut, fixé à 3, valeur qui doit correspondre au premier enregistrement après la ligne ou colonne des noms de paramètres et celle des unités. Afin de faciliter le repérage des colonnes qui sont généralement définies par des lettres, LPLWIN reconnaît indifféremment les lettres (C, D, E,... AA, AB, AC...) et les nombres (3, 4, 5,... 27, 28, 29...). Les coordonnées alphabétiques peuvent être saisies en majuscules ou en minuscules ;

Enfin, la liste des feuilles de calcul du fichier (encadré rouge sur la figure gauche ci-dessous) permet de sélectionner la feuille où figurent les données ; la confirmation de la sélection apparaît dans la fenêtre située à côté de la liste (figure droite suivante) ;

Le bouton "Prévisualiser" permet de visualiser la feuille sélectionnée pour vérifier visuellement l'ordonnancement des données.

LWin version 5.13		
Analyse Visualiser Rapport Options ?		
Préparation à importation	LPLWin version 5.13	
	munier Analyse visualiser Rapport Options ?	Microsoft Excel - Essailmport1.xis
- Identification de la feuille -	Préparation à importation	Suv. Prec. zoom imprimer Page Marges Aperu o
Fichier Essailmont1 vie		
r teriter assemityport. Als	dentification de la feuille	1 mmen
 Données sur une ligne 	Fichier Essailmport1.xls	2 FIT ME
C Données sur une colonne	C Desta secondaria	
Nombre de champs	C Données sur une colonne	
N° ligne/col. Légendes 1	Nomble de champs [20	
N* ligne/col. Unités 2	N* ligne/col Légendes 1	
N* ligne/col. Valeurs 3	N° ligne/col. Unites 2	
Nom de la teruite	N ligner col. Valeurs 3	
Feuil1 Feuil2	Nom de la feuille	
Feuil2	Feul2 Feul3	
Previsualisation	Previsualisation	
	Validar Annular	
Valider Annuler		
		Apercu: page 1 s. NUM
🖧 LPLWin version 5.13		
Fichier Analyse Visualiser Rappor	t Options ?	
B Preparation a Importat		
_ Iden	tification de la feuille	
Fic	hier Essailmoort1 xls	
(° [onnées sur une ligne	
	onnées sur une colonne	
Nor	hre de champs	
Nom	pre de cirampo [20	
N* lig	ne/col. Légendes a	
N* lig	ne/col. Unités B	
N* lig	ne/col. Valeurs	
	Nom de la feuille	
	Feuil2	
F	Feuil3	
	Previeualisation	
	Previsualisation	
	Valider Annuler	

Il ne reste plus alors qu'à valider pour continuer.

3•) Validation des libellés des paramètres

La validation des noms des paramètres et des unités se fait par un balayage des divers champs « paramètres ».

Un tableau à 5 colonnes apparaît dans la fenêtre « préparation à l'importation ». Les colonnes comportent :

Dans la 1^{ère} colonne, les 20 paramètres nécessaires,

Dans la 2^{ème} colonne, les noms des champs qui ont été reconnus,

Dans la 3^{ème} colonne, les unités de chaque paramètre qui sont prédéfinies dans les options d'unités d'entrée (voir rubrique « Menu Options »).

Dans la 4^{ème} colonne, les intitulés des unités des paramètres reconnus,

Dans la 5^{ème} colonne, les valeurs des paramètres dont les noms et unités ont été reconnus.

Dans l'exemple de la figure ci-dessus à droite, qui correspond au fichier de la figure 1-B, les champs 'température', 'calcium' et 'fluorures' n'ont pas été reconnus par LPLWIN car ils ne sont pas définis selon la liste du tableau II. Une liste de tous les champs figurant dans la feuille de calcul apparaît alors à droite du tableau et le message situé au dessous du tableau identique quel champ LPLWIN propose de rechercher. Dans le cas présent LPLWIN demande d'identifier le champ 'Température'. Deux possibilités :

- a) Il suffit de sélectionner le champ correspondant dans la liste située à droit du tableau (dans l'exemple le champ 'Température' est noté 'tempera'). La confirmation de la sélection apparaît dans la fenêtre située sous la liste (figure gauche ci-dessous). Il suffit alors de cliquer sur validation pour lancer la recherche.
- b) Ce paramètre n'est pas défini dans ce fichier Excel (ion minoritaire) et sa valeur peut être mise à zéro : il suffit alors de cliquer sur le bouton "Valeur=zéro". Si le paramètre manquant est le TH, le TA ou le CO2 libre, le champ restera vide afin d'éviter toute erreur de saisie pouvant entraîner des calculs erronés.

Si le champ « Unités » est conforme à la liste du tableau II (ce qui n'est pas le cas présent), les champs unités et valeur apparaissent avec l'identifiant du paramètre. Sinon, seul le champ « Paramètre » est renseigné.

On procède ensuite de la même façon pour tous les champs « Paramètre » qui n'ont pas été reconnus.

Il convient de remarquer que l'ordre dans lequel sont saisis les champs paramètre dans le tableau Excel n'a pas de conséquence sur la procédure de reconnaissance des données.

4•) Vérification de la cohérence des unités

Après avoir renseigné tous les champs « Paramètre », LPLWIN vérifie les unités. Si au moins un champ « Unité » n'a pas été reconnu, comme dans le cas précédent le message indique le nom du paramètre pour lequel LPLWIN propose de préciser l'unité.

Une liste les unités correspondant au type de paramètre apparaît, ainsi qu'une fenêtre rappelant le libellé de l'unité figurant dans le tableau (ovale bleu figure ci-dessous).

Il suffit de cliquer sur l'unité choisie (la confirmation de la sélection apparaît alors sous la liste) (ovale rouge figure ci-dessous), puis de valider.

Si l'unité, des paramètres mis à zéro avec le bouton "Valeur=zéro", n'est pas définie dans le fichier Excel, l'unité utilisée est celle par défaut pour la saisie.

🥼 L	PLWin version	n 5.1 3					<u>()</u> 1	PLWin version	n 5.13				
Fichie	r Analyse Visu	ualiser Rapp	ort Options	?			Fichi	er Analyse Vis	ualiser Rapp	ort Options	?		
6													
f	🖥 Préparatio	n à import	ation					Préparation	n à import	ation			
	Vérification de	es noms de	paramètres	et des unité	s			Vérification de	es noms de	naramètres	et des unité:	\$	
	Paramàtre	Champe	Linitá	Ch Unité	Valeur							-	
	Température	tempera	°C	On. Onico	valour			Paramètre	Champs	Unité	Ch. Unité	Valeur	
	Conductivité	Conduc	us/cm	uS/cm	520			Température	tempera	°C			I
	pH	pH	popen	poyon	8			Conductivité	Conduc	µs/cm	µS/cm	520	
	тн	тн	٩f					pH	pH		_	8	I
	ТА	TA	٩f	of				TA	TA	of	6		
	TAC	TAC	٩f	ppm	180	Unité trouvée		TAC	TAC	of	्म 	190	Unité trouvée
	CO ₂ libre	CO2	mg/l	mg/l		degrés C		CO libro	COOL	mal	ppm	100	dográe C
	Calcium	Calci	mg/l			Unités proposées		Coloium	Colci	mg/i	mg/i		degres c
	Magnésium	Mg	mg/l	mg/l	4)1			Magnéeium	Ma	mg/i	mal	4 1	Unités proposées
	Sodium	Na	mg/l	mg/l	8	'F		Sodium	Na	mg/i	ma	91	*C
	Potassium	к	mg/l	mg/l	3,3			Potossium	K	mg/i	ma	33	
	Ammonium	NH4	mg/l	mg/l	8,5			Ammonium	NH4	mg/i	mg/	8.5	
	Fer divalent	FeII	mg/l	mg/l	1			Fer divalent	FeII	mg/l	mal	1	
	Manganèse	Mn	mg/l	mg/l	0,2			Manganèse	Mn	mg/l	mal	0.2	
	Chlorure	Cl	mg/l	mg/l	29			Chlorure	d	ma/l	ma	29	
	Sulfate	SO4	mg/l	mg/l	62	Unité sélectionée		Sulfate	SO4	ma/l	ma/	62	Unité sélectionée
	Nitrate	NO3	mg/l	_				Nitrate	NO3	ma/l			°C
	Nitrite	NO2	mg/l	mg/l	11,5			Nitrite	NO2	ma/l	maA	11.5	
	Fluorure	Zero	mg/l	mg/l	0	Validation		Fluorure	Zero	ma/l	ma/	0	Withfun
	Oxygène Diss	. 02	mg/l	mg/l	3			Oxvoène Diss	02	mg/l	ma/l	3	Validation
	Le Champs le préciser d	Unité du para lans la liste, pu	mètre ci-dessi uis validez	ous n'a pas été	identifié, Veuillez			Le Champs le préciser d	Unité du para Jans la liste, pu	mètre ci-dessi uis validez	ous n'a pas été	identifié, Veui	lez
		Tem	pérature			Annuler			Tem	pérature			Annuler

Lorsque le paramètre est un titre (TH, TA ou TAC), un message apparaît lorsque le pointeur est sur la liste, rappelant l'équivalence de 'ppm' et de 'ppm CaCO3'.

	n a împorta	ation			
érification de	es noms de l	paramètres	et des unité	\$	
Paramètre	Champs	Unité	Ch. Unité	Valeur	
Température	tempera	°C	°C	15	
Conductivité	Conduc	µs/cm	µS/cm	520	
pН	pН			8	
тн	TH	٩f			
ТА	TA	٩f	of		\sim
TAC	TAC	٩f	ppm	180	Unité trouvée
CO ₂ libre	CO2	mg/l	mg/l		PPM CaCO3
Calcium	Calci	mg/l			Unités proposées
Magnésium	Mg	mg/l	mg/l	4,1	1
Sodium	Na	mg/l	mg/l	8	*D
Potassium	к	mg/l	mg/l	3,3	ppm
Ammonium	NH4	mg/l	mg/l	8,5	me/i
Fer divalent	FeII	mg/l	mg/l	1	ppm = ppm CaCO
Manganèse	Mn	mg/l	mg/l	0,2	ppm ppm cace
Chlorure	d	mg/l	mg/l	29	
Sulfate	SO4	mg/l	mg/l	62	Unité selectionée
Nitrate	NO3	mg/l			
Nitrite	NO2	mg/l	mg/l	11,5	,
Fluorure	Zero	mg/l	mg/l	0	Validation
Oxygène Diss	. 02	mg/l	mg/l	3	L
Le Champe	Unité du para	mètre ci-dess	ous n'a pas été	identifié. Veuil	lez

Si l'unité du calcium ou du magnésium n'a pas été reconnu, la liste des unités proposées comporte, outre les unités « mg/l », « me/l » et « mM/l », les trois unités suivantes : « °f », »°D » et « ppm ».

5•) Validation définitive

Lorsque tous les champs ont été identifiés et que les valeurs des paramètres sont toutes affichées LPLWIN propose une dernière vérification visuelle des valeurs et des unités, puis de valider.

Préparatio	n à import	ation	at das unitá			Vérification d	es noms de	paramètres	et des unité	\$	
ancadon de	s noms de	parametres	et des unite	s 		Paramètre	Champs	Unité	Ch. Unité	Valeur	
Paramètre	Champs	Unité	Ch. Unité	Valeur		Température	temp	°C	°C	20	
Température	tempera	°C	•C	15		Conductivité	Conduc	µs/cm	µS/cm	1186	
Conductivité	Conduc	µs/cm	µS/cm	520		pН	pH			8,005	
pH	pH		_	8		тн	TH	of	٥f	12,7	
TH	тн	of	ppm	260		ТА	TA	of	of		
TA	TA	٩f	of			TAC	TAC	of	of	13	
TAC	TAC	٩f	ppm	180		CO ₂ libre	CO2	mg/l	mg/l		
CO, libre	CO2	mg/l	mg/l			Calcium	Ca	mg/l	mg/l	36	
Calcium	Calci	mg/l	mg/l	102		Magnésium	Mg	mg/l	mg/l	9	
Magnésium	Mg	mg/l	mg/l	4,1		Sodium	Na	mg/l	mg/l	206	
Sodium	Na	mg/l	mg/l	8		Potassium	К	mg/l	mg/l	6,2	
Potassium	к	mg/l	mg/l	3,3		Ammonium	NH4	mg/l	ma A	0	
Ammonium	NH4	mg/l	mg/l	8,5		Fer divalent	FeII	µg/l	hđ	<10	
Fer divalent	FeII	mg/l	mg/l	1		Manganèse	Mn	µg/l	Lug/	20	
Vlanganèse	Mn	mg/l	mg/l	0,2		Chlorure	d	mg/l	mg/l	99	
Chlorure	Cl	mg/l	mg/l	29		Sulfate	S04	mg/l	mg/l	308	
Sulfate	SO4	mg/l	mg/l	62		Nitrate	NO3	mg/l	mg/l	1	
Nitrate	NO3	mg/l	mg/	15		Nitrite	NO2	mg/l	mg/l	0	
Vitrite	NO2	mg/l	mg/	11,5		Fluorure	fluor	mg/l	mg/l	2,28	
Fluorure	Zero	mg/l	mg/l	0		Oxygène Diss	. 02	mg/l	mg/l	9,1	
Oxygène Diss	. 02	mg/l	mg/	3		Tous les ch	amps ont été i	reconnus, véi	rifiez les donnée	es puis validez	Validation
Tous les ch	amps ont été	reconnus, vér	ifiez les donnée	es puis valider	Validation	pour contin	uer.				Validation

Cas où les unités des éléments mineurs sont de mg/l

Cas où les unité de certains éléments mineurs sont de µg/l

Nota : Si l'ensemble des champs 'Paramètre' et 'Unité' sont libellés selon le format indiqué au tableau II, il va de soi, que les étapes 3 et 4 n'apparaissent pas. Le gain de temps ainsi réalisé, est important.

La validation fait apparaître la feuille de l'eau choisie avec les données. LPLWin importe aussi les unités de manière à ce que la cohérence soit assurée avec les valeurs. Dans le présent exemple on peut remarquer l'intérêt de cette fonction puisque les titres sont exprimés dans le fichier Excel, en ppm de CaCO3 alors que l'on a choisi initialement les degrés français dans le menu « Options » « Données d'entrée ».

💭 Eau: 1 Et	ape: 0	LPWIN XX	XXXXXX								emperature	1186	uS/cm		2
	Valeur	Unité en me/l	Résultats Unité	Equilibres	CaCst	Marbre Un	ité F	quilibre Atmos	phère Unité	DH	I	8.005	poyen		E
Température	15	°C	ΣCations	pH				н		TH	+	12.7	of		H
Conductivité	520	μS/cm	ΣAnions	Delta pH				elta pH		T/	A		of		H
pН	8		Balance	∆CaCO			4	CO ₂		TA	AC .	13	of		
тн	260	ppm	H,CO;	TAC			T	AC			D. libre		mo	Les ug	r∕l ont é
TA		of	HCO;	H,CO			H	LCO			alcium	36	mo	1-2	
TAC	180	ppm	002-	HCO;			H	ico;		NA NA	andiaium	0		convei	tis en n
CO ₂ libre		mg/l	CO, Total	CO3-			C	O ₃ ²⁻		IV R	agnesium	206	mg		
Calcium	102	mg/l	λ	CO ₂ Tota				O ₂ Total		0	Jaium	200	mg		
Magnésium	4,1	mg/l	SatuRatio	∆CO ₂ t	_		4	.CO ₂ t		Po	otassium	6,2	mg/l	$I \land$	15
Sodium	8	mg/l	Туре	Calcium			5	aturatio		Ar	nmonium	0	mg/i		N
Potassium	3,3	mg/l	SatuCO2	SatuCO2				ype		Fe	r divalent	0	mg/l 🖌		
Ammonium	8,5	mg/l	Nom:	<u>ک</u>	Tracer	Imprimer		Mada da dasaa	UNITAC	M	anganèse	0,02	mg/l		
Fer divalent	1	mg/l			Taner	Tubuue		Mode de dosage	du LA.C.	CI	nlorure	99	ma/		
Manganése	0,2	mg/l				1 -	1	0.1.1.5		Su	lifate	308	mg/l		_
Chlorure	29	mg/l	<u>L</u> aiculer	abc		Fermer			titudes	Ni	trate	1	mg/l		
Sunate	102	mg/i					17			Ni	trite	0	mg/l		
Nitrate	10	mg/i	Classe d'eau selon la Régleme	ntation				In <u>d</u> ices et Cor	nstantes	FI	uorure	2,28	mg/l		
Fluorure	0	mg/i								0	kvoène diss.	9,1	ma/l		
Ovvinène diss	3	mal	Fichier: Essailmoort1.vls						-						
oxygone daa.		indli i	Lessemport Mis												

Remarque : Les premières versions de LPL 5 (5.00 à 5.12) ne prennent pas en compte le paramètre oxygène dans l'importation à partir d'un fichier Excel, cette donnée n'ayant d'intérêt que pour les traitements. Il convient, dans ce cas, de saisir manuellement la valeur si on la connaît.

3-3) Menu Visualiser

Les quatre premières fonctions de ce menu permettent d'ordonner l'affichage des différentes feuilles de calcul des étapes des eaux étudiées notamment pour pouvoir comparer facilement les résultats de plusieurs étapes. La cinquième fonction permet de modifier la sélection de l'étape affichée et la sixième fonction permet d'afficher ou non les messages qui peuvent apparaître sous le pointeur de la souris.

3-3-1) Affichage des feuilles d'étape en cascade

Les feuilles d'étapes ne couvrant jamais tout l'espace disponible à l'écran, et pouvant être déplacées par l'utilisateur, cette fonction permet de les ranger à partir du coin supérieur gauche en les décalant légèrement de manière à permettre de les identifier.

3-3-2) Affichage des feuilles d'étape en mosaïque horizontale

Cette fonction permet de ranger les feuilles d'étapes verticalement à partir du coin supérieur gauche. Cet affichage permet de comparer plus facilement les résultats et de visualiser rapidement l'évolution des caractéristiques des eaux sous l'effet d'un traitement.

🔆 LPLWin ver	rsion 5.00)											
Fichier Analyse	Visualiser	Rappo	rt Option	is ?									
🕼 Eau: 1 Eta	ape: 2	LP	WIN XX	xxxxxx									
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	°C		ΣCations	6,03	me/l	pН	7,53	7,5		pH	8,69	
Conductivité		µS/cm		ΣAnions	6,03	me/l	∆CaCO ₃		8,27	mg/l		-13,72	mg/l
pH	7,35			Balance	0,	%	TAC	15,18	16,01	of	TAC	15,18	of .
	26,	91 0F	5,2	HCO;	194 75	mg/l	HCO;	13,3	15,2	mg/l	HCO;	175 4	mg/l
TAC	15.18	of	3.04	CO27	0.21	ma/l	CO2T	0.32	0.31	mg/i	CO ²	4.39	mg/i
CO, libre	14,34	mg/l	0,33	CO, Total	3,36	mM/l	CO, Total	3,24	3,44	mM/I	CO, Total	2,96	mM/I
Calcium	97,2	mg/l	4,86	λ	0,91		∆CO₂t	-0,11	0,08	mM/I	∆CO₂t	-0,4	mM/I
Magnésium	4,13	mg/l	0,34	SatuRatio	0,66		Calcium	97,2	100,51	mg/l	Saturatio	13,86	
Sodium	7,98	mg/l	0,35	Туре	Agressive		SatuCO2	15,36	17,56		Туре	Calcifiante	
Ammonium	3,32	mg/l	0,09	SatuCO2	23,34	-							
Fer divalent	1,0	mg/i	0,1	Trait. Aér	ation-Déferris	ation	e e e	Tracer	Imp	rimer			
Manganèse	8,25	mg/l	0,3	Réactif Air	(02)				-				
Chlorure	33,82	mg/l	0,95	Dose ma	//		<u>è</u>	Traiter	Fer	mer	Calcu	ul d'incertitud	es
Sulfate	62,5	mg/l	1,3	Loose mg		_				J			
Nitrate	14,94	mg/l	0,24	Classe d'ea	au selon la Re	éalement	ation Eau à	à l'équilibre			Indice	s et Constan	tes
Nitrite	4,6	mg/l	0,1				·)						
Fluorure	0,8	mg/i	0,4	Fichier	CADocum	ente and	Settings\Pierre	Mes door	mente\Do	nnées () n	alutiques\Even	ole500 lo	
				Tionier.	jo. woodum	onte arlu	ookanga a lehe	, mes doct	monte to t	nices Afr	agridues ve xem	picooo.ip	
pH	7,52			Balance	0,	%					TAC	15,68	of
TH	26,	٩f	5,2	H,CO	14,14	mg/l					H,CO	0,87	mg/l
TA		٩f		HCO;	190,6	mg/l					HCO;	180,88	mg/l
TAC	15,68	٩f	3,14	CO3-	0,32	mg/l					CO3-	4,68	mg/l
CO ₂ libre	10,03	mg/l	0,23	CO ₂ Total	3,36	mM/I					CO, Total	3,06	mM/I
Magnésium	97,2	mg/i mg/i	+,86 0.34	λ SatuRetia	10	-					Saturatio	-0,3	mm/i
Sodium	7,98	mg/l	0,35	Type	Equilibre	-					Type	Calcifiante	
Potassium	3,32	mg/l	0,09	SatuCO2	16,33								
Ammonium	1,8	mg/l	0,1	T	N 817 - 199		en l	-	1	. 1			
Fer divalent	2,8	mg/l	0,1	Frait. Mis Béactif HC	e a l'équilibre			I racer	Imp	rimer			
Manganèse	8,25	mg/l	0,3	n			2		1				
Sulfate	33,82	mg/l	0,95	Dose 5,9	7 mg/l			Traiter	F <u>e</u> r	mer	Calcu	u d'incertitud	es
Nitrate	14.94	mg/i	0.24										
Nitrite	4,6	mg/l	0,1	Classe d'ea	au selon la Re	églement	ation Eau à	à l'équilibre			Indice	s et Constan	tes
Fluorure	6,8	mg/l	0,4										
				Fichier:	C:\Docum	ents and	Settings\Pierre	e\Mes docu	ments\Do	nnées Ana	alytiques\Exem	ple500.lp	
pН	8			Balance	0,	%	TAC	16,5	15,13	of	TAC	16,5	of
TH	c 26.	٩f	5.2	H,CO3	4,84	mg/l	H,CO ₃ *	15,66	12,54	mg/l	H ₂ CO ₃	0,87	mg/l
TA		٩f		HCO;	199,05	mg/l	HCO;	200,59	183,77	mg/l	HCO;	189,87	mg/l
TAC	16.5	of .	3.3	CO3	1,01	mg/l	CO3	0,32	0,33	mg/l	CO3-	5,15	mg/l
CO ₂ libre	C U.08	me/l	0.08	CO ₂ Total	3,36	mM/I	CO, Total	3,55	3,22	mM/I	CO ₂ Total	3,21	mM/I
Magnésium	0.34	me/i	0.34	SatuRatio	3.18		Calcium	97.2	91.7	mm/l	Saturatio	16.17	mmyi
Sodium	0.347	me/l	0.35	Туре	Calcifiante	2	SatuCO2	18,08	14,48	g/	Туре	Calcifiante	
Potassium	0.085	me/l	0.09	SatuCO2	5,59								
Ammonium	1.8	mg/l	0.1	Nom:			e l	-	1 .	. 1			
Fer divalent	0.1	me/l	0.1					I racer	Imp	rimer	<u>M</u> ode de	dosage du "	I.A.C.
Manganèse	0.3	me/l	0.3					-	-		0.1	1.16	
Sulfato	0.789	me/l	0.79		Dalculer		abe	Traiter	Fer	mer	Laicu	u d'incertitud	es
BA	1.302	ine/i	1.5										

3-3-3) Affichage des feuilles d'étape en mosaïque verticale

Cette fonction permet de ranger les feuilles d'étapes horizontalement à partir du coin supérieur gauche. Cet affichage permet de comparer plus facilement les résultats et de visualiser rapidement l'évolution des caractéristiques des eaux sous l'effet d'un traitement.

🎑 LPLWin version	5.00																		P	X
Fichier Analyse Visu	aliser Rappo	ort Option:	s ?																	
🕞 Eau: 1 Etape:	2 L	PWIN XXX	xxxxx														_			
Val Température 16,7 Conductivité 16,7 pH 7,33 TH 26, TA 15,7 CO_ libre 14,7 Co_ libre 14,7 Calcium 97,7	eur Unité 2 ℃ µS/cm 5 °f 18 °f 14 mg/l 2 mg/l	en me/l 5,2 3,04 0,33 4,86	Σ Cations Σ Anions Balance H ₂ CO [*] ₂ HCO [*] ₂ CO [*] ₂ - CO [*] ₂ -	Résultats 6,03 6,03 0, 20,2 184,75 0,21 3,36 0,91	Unité me/l me/l % mg/l mg/l mg/l mM/l	Equilibres pH ACaCO, TAC H ₂ CO, HCO, CO, Total ACO,t	Ca Cst. 7,53 15,18 13,3 184,51 0,32 3,24 -0,11	Marbre 7,5 8,27 16,01 15,2 194,62 0,31 3,44 0,08	Unité mg/l of mg/l mg/l mM/l mM/l	Equilibre pH A CO, TAC HCO, CO, CO, Total ACO,t	Atmosphèr 8,69 -13,72 15,18 0,87 175,4 4,39 2,96 -0,4 -0,4	mg/l of mg/l mg/l mg/l mM/l mM/l	nité :/ :/ :/ :/ :/ :/ :/			Equilibre pH A CO TAC H <u>CO</u> CO CO CO TOTAL ACO	Atmospher 8,71 -9,42 15,68 0,87 180,88 4,68 3,06 -0,3	e Unité mg/l °f mg/l mg/l mM/l mM/l	1111€ 2/ 2/ 2/ 2/ 2/ 1/	
Magnésium 4, 13 Sodium 7,99 Potassium 3,33 Ammonium 1,8 Fer divalent Manganèse 8,22 Chlorure 333	3 mg/l 3 mg/l 2 mg/l mg/l 5 mg/l 32 mg/l	0,34 0,35 0,09 0,1 0,3 0,95	SatuRatio Type SatuCO2 Trait. Aér Réactif Air n	0,66 Agressive 23,34 ation-Déferris (D2)	sation	Calcium SatuCO2	97,2 15,36 T <u>r</u> acer	100,51 17,56	imer	Saturatio Type	13,86 Calcifiante			Tracer	 Fermer	Saturatio Type	14,68 Calcifiante			
Sulfate 62,1 Nitrate 14,2 Nitrite 4,6 Fluorure 6,8	5 mg/l 94 mg/l mg/l mg/l	1,3 0,24 0,1 0,4	Classe d'e	au selon la R	églementa nents and S	ation Eau à	l'équilibre	uments\Do	nnées An	Ingice alytiques\Exem	s et Constan ple500.lp	ites	meni	tation Eau à l'équilibre	uments\Données A	Indice halytiques\Exem	s et Constan	tes	ment	tatio

3-3-4) Rangement des icones

Cette fonction permet de ranger horizontalement sur la partie inférieure de l'écran les icones des feuilles d'étapes lorsqu'elles sont réduites à partir du coin inférieur gauche.

🥼 LPLWin ver	sion 5.00)														
Fichier Analyse	Visualiser	Rappor	rt Options	?												
📴 Eau: 1 Et	ape: 2	L	PWIN XX	xxxxxx												
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphè	re Unité			
Température	16,2	°C		ΣCations	6,03	me/l	pH	7,53	7,5		pH	8,69				
Conductivité		µS/cm		ΣAnions	6,03	me/l	ACaCO,		8,27	mg/l	Δ CO ₂	-13,72	mg/l			
pН	7,35			Balance	0,	%	TAC	15,18	16,01	٥f	TAC	15,18	of			
TH	26,	٩f	5,2	H,CO	20,2	mg/l	H,CO;	13,3	15,2	mg/l	H,CO;	0,87	mg/l			
TA		٩f		HCO;	184,75	mg/l	HCO;	184,51	194,62	mg/l	HCO;	175,4	mg/l			
TAC	15,18	٩f	3,04	CO3-	0,21	mg/l	CO3-	0,32	0,31	mg/l	CO3-	4,39	mg/l			
CO ₂ libre	14,34	mg/l	0,33	CO ₂ Total	3,36	mM/I	CO ₂ Total	3,24	3,44	mM/I	CO ₂ Total	2,96	mM/I			
Calcium	97,2	mg/l	4,86	λ	0,91		∆CO₂t	-0,11	0,08	mM/I	∆CO₂t	-0,4	mM/I			
Magnésium	4,13	mg/l	0,34	SatuRatio	0,66		Calcium	97,2	100,51	mg/l	Saturatio	13,86				
Sodium	7,98	mg/l	0,35	Туре	Agressive		SatuCO2	15,36	17,56		Туре	Calcifiante				
Potassium	3,32	mg/l	0,09	SatuCO2	23,34											
Ammonium	1,8	mg/l	0,1	T 2 4 4	1 D.(()		ð	-	1 .	. 1						الکار
Fer divalent		mg/l		Frait. Ae	(0.2)	ation		l racer	Imp	rimer						
Manganèse	8,25	mg/l	0,3	neacu Ai	(02)								1			
Chlorure	33,82	mg/l	0,95	Dose mo	1/1			<u>T</u> raiter	Fer	mer	Calc	ul d'incertitue	les		📴 Eau: 1 📴 🗆 🔼	
Sulfate	62,5	mg/l	1,3													
Nitrate	14,94	mg/l	0,24	Classe d'e	au selon la Bi	éalement	ation Eau à	a l'équilibre			Indice	es et Constar	ntes			
Nitrite	4,6	mg/l	0,1	0.0000 0 0		ogiornorio										
Fluorure	6,8	mg/l	0,4													
				Fichier:	C:\Docum	ents and	Settings\Pierre	Mes doc	uments\Do	nnées Ana	lytiques\Exem	ple500.lp				
	_	_	_											1		

LPLWin vers	sion 5.00)										
thier Analyse	Visualiser	Rapport	Options	?								
E Faur 1 Fta	10a: 2	I D		YYYYY								
	Valeur	Unité	en me/i		Résult	ats Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre Atmosphère	Unité
Température	16,2	°C viClam		Σ Cations	6,03	me/	pH AC=CO	7,53	7,5		pH 8,69	
oH	7 35	µs/cm		Balance	6,03	me/i	TAC	15.18	16.01	of mg/i	TAC 15.18	of mg/i
TH	26,	of	5.2	H.CO.	20.2	maA	H.CO.	13.3	15,2	ma/l	H.CO. 0.87	ma
TA		٩f		HCO;	184,7	i mg/l	HCO;	184,51	194,62	mg/l	HCO; 175,4	mg/l
TAC	15,18	٩f	3,04	CO;	0,21	mg/l	CO;	0,32	0,31	mg/l	CO3- 4,39	mg/l
CO ₂ libre	14,34	mg/l	0,33	CO, Tota	1 3,36	mM/I	CO, Total	3,24	3,44	mM/I	CO, Total 2,96	mM/I
Calcium	97,2	mg/l	4,86	λ O L D	0,91		ACO ₂ t	-0,11	0,08	mM/I	ΔCO_t -0,4	mM/I
Magnésium Sodium	4,13	mg/l	0.34	SatuRa	0,66	chuo	Caldum	97,2	100,51	mg/l	Saturatio 13,86	
Potassium	3,32	mg/i	0.09	SatuCOS	23,34	SIVE	LOBILIC/O2	112,20	17,30		Line Laurante	
Ammonium	1,8	mg/	0,1						1	1		
Fer divalent		mg/l		Trait. A	vération-D	Sterrisation	B	Tracer	Įmp	rimer		
Manganèse	8,25	mg/l	0,3	neactif /	ur (U2)			_				1
Chlorure	33,82	mg/l	0,95	Dose	ng/l		B	<u>T</u> raiter	Fe	mer	Calcul d'incertitudes	-
Sulfate	62,5	mg/	1,3									
Nitrate	14,94	mg/l	0,24	Classe o	l'eau selor	la Réglemen	ation Eau	à l'équilibre	,		Ingices et Constante	18
Fluorume	4,0	mg/i	0,4									
🕒 Eau: 1 (808	< (D) E	au: 1	80	×							
Prêt												

Après

3-3-5) Fenêtre

Cette fonction fait apparaître la liste de toutes les feuilles d'étapes avec marquage (\checkmark) de l'étape sélectionnée. On peut modifier la sélection en cliquant sur la ligne de l'étape que l'on souhaite sélectionner.

Il convient de noter que la modification de la sélection de l'étape peut aussi s'effectuer en cliquant sur une partie quelconque visible de l'étape si celle-ci n'est totalement recouverte par les autres étapes. La fonction « Fenêtre » prend son intérêt lorsque de nombreuses étapes sont affichées à l'écran soit sous forme réduite soit sous la forme normale.

iu: 1 Eta	Cascade	horizontale	xxxx										
Eaur 1	Mosaigue	verticale	(XXX										
	Ranger ico	ines											
📴 Eau			IN VI	VVVVV									
Te	Henetre		1Ea	u: 1Etape: 0	LPWIN	1 XXXXXXXXX							
2	Commenta	ires visibles	268	u: 1Etape: 1	LPWIN	4 XXXXXXXXXX	ilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphè	re Unité
Tempéi	,		✓ 3Ea	u: 1Etape: 2	LPWIN	4 XXXXXXXXXX		7,53	7,5		pH	8,69	
TH Conductiv	nte	µS/a	1	ΣAnions	6,03	me/	ACaCO,		8,27	mg/l	ΔCO,	-13,72	mg/l
r/ pH	7,3	5		Balance	0,	%	TAC	15,18	16,01	of	TAC	15,18	of
TH	26,	٩f	5,2	H,CO,	20,2	mg/l	HCO,	13,3	15,2	mg/l	H,CO;	0,87	mg/l
TA		٩f		HCO;	184,75	mg/l	HCO;	184,51	194,62	mg/l	HCO;	175,4	mg/l
TAC	15,	18 °F	3,04	CO3-	0,21	mg/l	co;	0,32	0,31	mg/l	co;	4,39	mg/l
CO, libre	14,	34 mg/l	0,33	CO, Total	3,36	mM/	CO, Total	3,24	3,44	mM/I	CO, Total	2,96	mM/
Calcium	97,	2 mg/l	4,86	λ	0,91	_	ACO _x t	-0,11	0,08	mM/I	ACO ₂ t	-0,4	mM/I
Magnésiu	m 4,1	3 mg/l	0,34	SatuRatio	0,66		Calcium	97,2	100,51	mg/l	Saturatio	13,86	_
Sodium	7,9	3 mg/l	0,35	Туре	Agressiv	e	SatuCO2	15,36	17,56		Type	Calcifiante	
Potassiun	n 3,3	2 mg/l	0,09	SatuCO2	23,34								
Ammoniu	m 1,8	mg/l	0,1	Tue Afr	ation Differe	in a fina	20		1.	.			
Fer divale	nt	mg/l		Dánohí Air	allon-Detell	rsation	<u> </u>	I Tacet	Twb	nmer			
Manganès	xe 8,2	5 mg/l	0,3	n	01)								
Chlorure	33,	32 mg/l	0,95	Dose mg	И		H	Traiter	Fgr	mer			
Sulfate	62,	5 mg/l	1,3										
Nitrate	14;	94 mg/l	0,24	Classe d'es	au celon la P	Réclements	tion Eau	à l'équilibre			Indice	is et Constar	ntes
Nitrite	4,6	mg/l	0,1	01000000		regenerate							
Fluorure	6,8	mg/l	0,4		_								

3-3-6) Commentaires et Conseils

🕼 LPL	.Win ver	sion 5.00)		
Fichier	Analyse	Visualiser	Rapport	Options	?
		Cascad Mosaiq Mosaiq Ranger Fenêtre	e ue horizont ue verticale icones	ale	
		Comme	ntaires et (Conseils)	Activer Désactiver

Cette fonction permet d'afficher ou non les commentaires, conseils ou explications qui apparaissent sous le pointeur de la souris lorsque celui-ci est déplacé sur un bouton (presse papier, indices,...) ou sur une case du tableau de données (conductivité ou ammonium) ainsi que les conseils éventuels qui apparaissent sur la feuille de choix des traitements.

Sodium	0.347	me/l	0.35	Туре	Calcifi
Potassium	0.085	me/l	0.09	SatuCO2	5,59
Ammonium	1.8	mg/l	0.1	Nom:	
Fer divaler An	monium tot	al (NH3 -	+ NH4+)	1.	
Manganèse	0.3	me/l	0.3		
Chlorure	0.789	me/l	0.79		
Sulfate	1.302	me/l	1.3		150
Nitrate	0.241	me/l	0.24	C1	
Nitrite	0.1	me/	0.1	Classe d'e	au selon

Exemple de message sous le pointeur

En cliquant sur la ligne « Commentaires et Conseils » le sous-menu d'activation apparaît à droite de la ligne. Lorsque la fonction est active, seule la ligne « Désactiver » est disponible. En cliquant sur « Désactiver », on neutralise l'affichage des messages et conseils. Pour réactiver cet affichage, il suffit de revenir sur le sous-menu et de cliquer sur ''activer'' qui est alors la seule ligne disponible.

L'état de cette fonction est sauvegardé lorsque l'on quitte LPLWin.

3-4) Menu Rapport

Ce menu offre la possibilité d'imprimer l'ensemble des résultats relatifs à une (1) ou toutes les eaux (2), nombre qui peut être de trois eaux si l'on a procédé à un mélange des deux premières eaux.

	LPLWin versio						
1 -	Fichier Analyse Vis	sualiser Rap	oport Options ?				2
	💭 Eau: 1 Etape		Tout	xxx			
	TID Faur 1 Ft	ape: 1	Une eau	XXXXXX			
	Te	ape, i		~~~~			
	C(Valeur	Unité en me/l		Résultats	Ur	
	pH Température	16,2	°C	Σ Cations	6,132	me	
	TH Conductivité	600	µS/cm 492	ΣAnions	6,132	me	
	T/ pH	7,52		Balance	0,	%	

3-4-1) Une eau...

Dès que l'on sélectionne cette fonction, la feuille de choix de l'eau apparaît.

44	LPLWin versio	n 5.13						
Fid	nier Analyse Vis	sualiser Ra	apport (Options				
	Eau: 1 Etape	: 0 ape: 1	LPWII LF	и XXXXX PWIN XX	xx			
c		Valeur	Unité	en me/l				Equilibre
p T	Conductivité	600	ΨC μS/cm	492	- Choix d'eau —			Delta pH
Ī	pH	7,52	~	F 0	G Emil	Le programme LPL		Δ CO ₂
C	TA	26,	ণ	5,2		permet de travailler avec plusieurs analyses		H,CO,
c	TAC	15,682	٩f	3,136	C Gould	simultanément, on utilise un numéro d'eau		HCO;
N	CO, libre	10,035	mg/l mg/l	<i>0,228</i> 4.86	U Laug	pour les différencier.		CO; ⁻ CO, Total
P	Magnésium	4,131	mg/l	0,34				∆CO ₂ t
A	Sodium	7,981	mg/l	0,347	<u> </u>	Annuler		Saturatio
R	Potassium	3,315	mg/l	0,085				Туре
M	Fer divalent	2.8	mg/l	0,099	Frait. Mise à Béactif HCI	équilibre 🛃 Trac	er <u>I</u> mprimer	

Si, comme dans l'exemple ci-dessus, une seule eau est à l'écran, seule l'option « Eau 1 » est active. Si 2 ou 3 eaux sont visibles à l'écran, les options « Eau 2 » et le cas échéant « Eau 3 » seront activées. Puis, le choix éventuel étant fait, LPLWin permet de choisir la police de caractères désirée ainsi que le style et la taille de ces caractères.

FICHI	er Analyse vis	sualiser Ra	apporc	Options	r .					
\mathbb{P}				N XXXX	XXXX					
	💭 Eau: 1 Et			WIN XX	xxxx	Police			? 🛂	3
Te C(타	Température	Valeur 16,2	Unité ℃	en me/l	ΣCa	Police : Arial	Style : Standard Standard	Taille : 8	ОК	<u>str</u> ,7
파파파이에	pH TH TA TAC CO, libre	7,52 26, 15,682 10.035	of of of mal	5,2 3,136 0.228	Bal H.C HCC CO	11 Arial Black 12 Arial Narrow 13 Arial Narrow 14 Arial Rounded MT Bok 14 Arial Unicode MS 14 Baby Kruffy 14 Baskerville Old Face	Italique Gras Gras italique	9 10 11 12 14 16	Annuler	, 1 9, 5, 80
SIP(AT Fel Matic	Calcium Magnésium Sodium Potassium Ammonium Fer divalent	97,2 4,131 7,981 3,315 1,8 2,8	mg/l mg/l mg/l mg/l mg/l mg/l	4,86 0,34 0,347 0,085 0,099 0,1	λ Sati Typ Sati Trait Béa		Aperçu AaBbYyz	Zz		,0 0,: 4, <u>al</u>
SL Nir	Manganèse Chlorure Sulfate	8,25 33,821 62,496	mg/l mg/l mg/l	0,3 0,953 1,302	Dos Pure	ll s'agit d'une police OpenType	Script : Occidental qui sera utilisée à la fois	▼ sur votre		8'ir
Fli O;	Nitrate Nitrite	14,942 4,6	mg/l mg/l	0,241 0,1	Cla	imprimante et votre écran.				et I

Le rapport est imprimé comme le montre la figure (page suivante), à raison d'une page par étape.

3-4-2) Tout

Dans ce cas, la procédure est la même que précédemment. La feuille de choix de l'eau n'apparaît évidemment plus. Toutes les eaux et leurs étapes sont alors imprimées dans un format semblable à celui qui est montré à la page suivante.

Compte-Rendu de calcul, programme LPLWin v5.13, CIFEC

Désignation de l'eau : Eau numéro : 1 Etape : 0	Néost						Désignation de l'eau : Eau numéro : 1 Etape : 1				
Réactif utilisé :	Néant						Traitement appliqué : Réactif utilisé :	Mise à HCl	l'équilibre	oureté:	100 %
Dose : Température	16.2	°C	61 16	mg/l °F			Dose :	0,164	mM/I	5,975	mg/l
pH:	8,0	saisi:	8				Temperature:	16,2	۰C	61,16	4
Oxygène dissous	9,85	mg/l	100,0	%	Clam	(16.2%0)	Oxygène dissous	9,85	mg/l	100,0	%
CO2 libre:	0.078	mM/I	(25°C)	503,8	µ5/cm	(16,2°C)	Conductivité:	600,2	µS/cm	(25°C)	507,5
T.H.:	5,2	me/l	26,	°f			CO2 libre:	0,228	mivi/i me/l	26	°f
T.A.:	2.2	me/l	10 5	°f			T.A.:	•,m	me/l	,	°f
Calcium:	3,3	me/i mM/l	16,5 97.2	ma/l	4.86	me/l	T.A.C.:	3,136	me/l	15,682	°f
Magnésium:	0,17	mM/I	4,131	mg/l	0,34	me/l	Calcium: Magnésium:	2,43	mIVI/I mM/I	97,2	mg/l
Sodium:	0,347	mM/I	7,981	mg/l	0,347	me/l	Sodium:	0,347	mM/I	7,981	mg/l
Ammonium:	0,085	mM/I	1.8	mg/l	0,065	me/l	Potassium:	0,085	mM/I	3,315	mg/l
Fer II:	0,05	mM/I	2,8	mg/l	0,1	me/l	Fer II:	0.05	mM/l	2.8	mg/l
Manganèse:	0,15	mM/I	8,25	mg/l	0,3	me/l	Manganèse:	0,15	mM/i	8,25	mg/l
Sulfate:	0,789	mM/i	62,496	mg/l	1.302	me/l	Chlorure:	0,953	mM/i	33,821	mg/l
Nitrate:	0,241	mM/I	14,942	mg/l	0,241	me/l	Nitrate:	0,851	mM/I	14,942	mg/l
Nitrite:	0,1	mM/I	4,6	mg/l	0,1	me/l	Nitrite:	0,1	mM/I	4,6	mg/l
Fluorure:	0,4	mwi/i	0,8	mg/i	0,4	me/i	Fluorure:	0,4	mM/I	6,8	mg/l
Somme cations:	6,132	me/l					H2CO3*:	0.228	mM/I	14.14	ma/l
Somme anions:	6,132	me/l					HCO3-:	3,125	mM/I	190,604	mg/l
H2CO3*	0,078	% mM/l	4 841	ma/l	0.078	me/l	CO3:	0,005	mM/I	0,318	mg/l
HCO3-:	3,263	mM/I	199,046	mg/l	3,263	me/l	Lambda	3,358	mivi/i		
CO3:	0,017	mM/l	1,013	mg/l	0,017	me/l	SatuRatio:	1,0			
CO2 Total:	3,358	mIVI/I					SatuCO2:	16,33			
SatuRatio:	3,18						Type d'eau:	Equilibit	re 'équilibre		
SatuCO2:	5,59						Type / Regionientation.	Luuui	equilibre		
Type / Réglementation:	Eau ca	ante Ilcifiante					Equilibre avec le CO2 a	mosphé	rique		
Equilibre avec Calcium	constant						pH:	8,71			
pH:	7,5						Delta CO2:	-0.214	mM/I	-9.42	ma/l
Delta pH:	-0,51		10 5	0.5			TAC:	3,136	me/l	15,682	°f
H2CO3*:	0,253	mM/l	5.809	ma/l	0.253	me/l	H2CO3*:	0,014	mM/l	0,866	mg/l
HCO3-:	3,288	mM/l	128,249	mg/l	3,288	me/l	CO3-:	0.078	mM/I	4.677	mg/l
CO3:	0,005	mM/I	0,095	mg/l	0,011	me/l	CO2 Total:	3,057	mM/I		
Delta CO2 Total:	0,188	mM/I					Delta CO2 Total:	-0,301	mM/I		
Calcium:	2,43	mM/l	97,2	mg/l	4,86	me/l	Type d'eau:	Calcifia	inte		
SatuCO2:	18,08										
Equilibre après essai au	ı marbre										
pH:	7,55										
Delta CaCO3:	-0,45	mM/I	-13,755	mg/l							
TAC:	3,026	me/l	15,129	°f	2.222						
H2CO3*:	0,202	mM/I	12,541	mg/l	0,202	me/l					
CO3:	0.006	mM/I	0.332	ma/l	0.011	me/l					
CO2 Total:	3,22	mM/I	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	3							
Delta CO2 Total:	-0,138	mM/I	01 609	mall	1 595	mo/l					
SatuCO2:	2,292	11100/1	91,090	mg/i	4,505	men					
Equilibre avec le CO2 a	tmosphé	érique									
pH:	8,73										
Delta pH:	0,73		0.001	10000000							
Delta CO2:	-0,064	mM/I me/l	-2,821	mg/l °f							
H2CO3*:	0,014	mM/I	0,866	mg/l	0,014	me/l					
HCO3-:	3,113	mM/I	189,87	mg/l	3,113	me/l					
CO2 Total	0,086	mM/l	5,154	mg/l	0,172	me/I					
Delta CO2 Total:	-0,146	mM/I									
SatuRatio:	16,17	1000									
Type d'eau:	Calcifi	ante					LPLWin version 5.13				
1 DI Min version 5 12							· Dana 2				
Desc 4							aye 2				
Page 1											

µS/cm (16,2°C) 4,86 0,34 0,347 0,085 0,1 0,1 0,3 0,953 1,302 0,241 0,1 0,4

me/l me/l me/l

me/l me/l me/l me/l me/l me/l me/l me/l

me/l me/l me/l

0,228 3,125 0,005

0,014 me/l 2,965 me/l 0,156 me/l

Compte-Rendu de calcul, programme LPLWin v5.13, CIFEC

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr

Notice 4021d

Rapport Eau 1 (étape 0)

du 14/01/2020

P.**31**/136

Rapport Eau 1 (étape 1)

3-5) Menu Options

Ce menu permet de fixer et modifier les paramètres essentiels de calcul, les unités de saisie et les unités souhaitées pour les résultats de calcul ainsi que la langue utilisée.

3-5-1) Calcul...

L'activation de cette propriété fait apparaître une fenêtre d'options :

LPLWin			_	(C)
	calcul	Classes d'eaux selon la Réglementation	Equilibre avec l'atmosphère	untin ibé
	donnée et calculée en %	(pHeq·pH)	Pression de CO2 0,0003 Temperal	ture
	5,0 Balance ionique maximale en %	O,4 Limite des eaux agressives	Len barj d'expression Conducti	vité (F)
		▲ 0,2 Limite des eaux légèrement agressives	Nombre de 2000	×
	Limite inferieure du SatuRatio pour Equilibr	-0,2 Limite des eaux	boucles C 25°C	
	Limite supérieure du Saturnatio pour Equilibre	Imite des eaux	pH d'équilibre réglementaire	
	Sans contrôle de l'analyse	• incrustantes	pH a Laicium const. DH au marbre	(D)
(B)	n on sauvée) nix du pK de solubilité de CaCO3-			
•	Général C Calo	cite C Aragonite	C Vatérite	(F)
	Réinit. Limites	Confirmer	Annuler	

Dans cette fenêtre, il est possible d'adapter les paramètres relatifs :

(A) Au contrôle de cohérence de l'analyse saisie :

- Limite du pourcentage d'erreur tolérée entre la conductivité/résistivité saisie et la valeur calculée,
- Valeur limite du pourcentage d'erreur toléré de la balance anions/cations,
- Contrôle de l'analyse en termes de force ionique.
- (B) Au choix des limites du taux de saturation permettant de caractériser l'eau :
 - La limite inférieure du Saturatio au-dessous de laquelle l'eau est réputée agressive,
 - La limite supérieure du Saturatio au-dessus de laquelle l'eau est réputée calcifiante,
 - Les limites fixées par le Ministère de la Santé qualifiant l'eau au regard de l'équilibre calcocarbonique et une option permettant de choisir le pH de référence.
- (C) Au choix de la pression partielle de CO₂ dans l'air,
- (D) Au choix du nombre d'itérations du calcul d'erreur,
- (E) Au choix du produit de solubilité du carbonate de calcium,
- (F) Au choix de la température d'expression de la conductivité.

3-5-1-1) Ecart entre conductivité saisie et calculée :

LPLWin calcul la conductivité de l'eau à partir des conductivités équivalentes limites de chaque ion saisi, corrigées de l'effet de la force ionique (John R. ROSSUM – JAWWA avril 1975). Si la conductivité mesurée en laboratoire est saisie, elle est comparée à celle qui est calculée selon la formule :

Delta (%) = 100 x ($C_{mesurée} - C_{calculée}$) / $C_{mesurée}$

Compte tenu de la précision du calcul de la conductivité (1 à 2 %), la valeur de delta fixée par défaut est de 5 %. Il est possible de modifier cette valeur en cliquant sur les flèches situées à gauches de la fenêtre de saisie (pas de 0.1 %) ou en entrant directement la valeur souhaitée dans cette fenêtre. Il convient de noter que la précision du calcul de conductivité dépend notamment de la précision de la balance ionique (les concentrations manquantes ne peuvent pas être prises en compte dans le calcul). Si la valeur de delta dépasse la limite fixée un message d'alerte apparaît :

LplWin	×
⚠	Le delta conductivité/résistivité calculée - saisie dépasse la limite fixée.
	ОК

Cette alerte n'a pour but que d'attirer l'attention de l'utilisateur et ne perturbe pas la suite du calcul puisque la conductivité n'est pas utilisée pour le calcul de l'équilibre calco-carbonique

3-5-1-2) Balance ionique :

LPLWin permet de vérifier la cohérence de l'analyse par le calcul de l'écart entre la somme des anions et celle des cations. La valeur affichée dans le tableau de résultats de l'étape, résulte de la formule suivante :

Balance = 100 x 2 x ($\Sigma_{anions} - \Sigma_{cations}$) / ($\Sigma_{anions} + \Sigma_{cations}$)

Elle est comparée à la limite fixée. Au-delà de cette limite, un message d'alerte apparaît :

Ce message n'a pour effet que d'attirer l'attention de l'utilisateur sur la valeur excessive de l'écart, mais ne perturbe pas la suite des calculs. La valeur limite fixée par défaut est de 5 %, ce qui est une valeur communément admise dans les laboratoires d'analyse. On peut la modifier ici selon la précision souhaitée pour les résultats d'analyse. A chaque clic sur les flèches de gauche on fait varier la limite de 0,1 %. On peut aussi directement saisir la valeur dans la fenêtre.

3-5-1-3) Contrôle de saisie :

Le calcul de la correction de force ionique des constantes de dissociations ne sont valables que si la force ionique de l'eau est inférieure à 0,1. Au-delà de cette limite, la rigueur des calculs n'est plus garantie. Ainsi le logiciel n'est applicable qu'à des eaux faiblement ou moyennement minéralisées. Le contrôle de saisie interdit donc l'entrée de concentrations supérieures à une valeur fixée à 900 mg/l. Dans ce cas, un message d'erreur apparaît et la poursuite du calcul est impossible :

Toutefois il peut être utile d'avoir un résultat approximatif permettant de situer l'eau fortement minéralisée par rapport à l'équilibre calcocarbonique. Il est alors possible de mener le calcul sans contrôle préalable des données saisies en cochant cette option. Mais, afin de limiter strictement l'utilisation de cette possibilité aux cas exceptionnels cette option n'est pas sauvegardée lorsque l'on quitte le logiciel.

3-5-1-3) Caractérisation de l'eau

Bien que la valeur du taux de saturation (*SatuRatio*) permette de préciser l'état calcocarbonique, il est souvent intéressant de caractériser l'eau par rapport à l'équilibre calcocarbonique par ces propriétés : eau à l'équilibre, eau calcifiante ou eau agressive. LPLWin permet de donner deux interprétations: - L'état calco-carbonique résultant des calculs du produit de solubilité

- La classe d'eau définie par le Ministère de la Santé (Circulaire NDGS/SD7A no 2007-39 du 23 janvier 2007). La circulaire 2003-445 du 17 septembre 2003 précise que la méthode Legrand et Poirier doit être utilisée. Ce que fait parfaitement votre logiciel LPLWin.

3-5-1-4) SatuRatio d'équilibre :

Théoriquement l'équilibre est atteint lorsque le *SatuRatio* est strictement égal à l'unité. Mais dans les faits, compte tenu notamment des erreurs de mesures, on est amené à définir une plage de valeurs du *SatuRatio* pour laquelle on considère que l'eau est à l'équilibre. Les valeurs limites fixées par défaut 1 et 1,1 ne sont pas centrées sur l'équilibre (1) afin d'éviter de conclure qu'une eau même légèrement agressive est à l'équilibre, l'objectif étant de s'assurer que l'eau puisse former le dépôt protecteur de carbonate de calcium sur les parois des ouvrages.

C'est limites peuvent être modifiées soit en cliquant sur les flèches situées à gauche des fenêtres de saisie (pas de 0,01), soit en entrant directement les valeurs souhaitées dans ces fenêtres.

3-5-1-5) Classes d'eau selon la DGS et SISE:

Le Ministère de la Santé, dans la circulaire du 23 janvier 2007, qui précise les arrêtés du 11 janvier 2007, indique que l'eau doit être à l'équilibre ou légèrement incrustante. Il fixe aussi 5 classes en fonction de la différence entre le pH d'équilibre et le **pH de l'eau mesuré in situ**. La circulaire 2003-445 du 17 septembre 2003 précise que la méthode Legrand et Poirier doit être utilisée.

Toutefois, la circulaire ne précise pas explicitement si le pH d'équilibre à prendre en compte est le pH d'équilibre à calcium constant (pHs de Langelier) ou bien le pH d'équilibre après contact avec le marbre (pH après contact avec le carbonate de calcium ou encore appelé pH au marbre). Ainsi, les contrôles sanitaires pouvant opter pour l'une ou l'autre référence, LPLWin permet de choisir l'une des deux en cliquant sur le bouton correspondant dans le menu Options/Calcul. Les 5 classes d'eaux sont les suivantes :

 1^{fe} alogge i caux solit les sulvantes :

- 1^{re} classe : eau à l'équilibre calcocarbonique : 0,2 \leq pH_{eq} pH *in situ* \leq 0,2
- 2^e classe : eau légèrement agressive : 0,2 < pH_{eq} pH in situ $\leq 0,3$
- 3^e classe : eau agressive : 0,3 $\,< pH_{eq}$ pH in situ
- 4^{e} classe : eau légèrement incrustante : $0,3 \le pH_{eq}$ pH in situ < 0,2
- 5^{e} classe : eau incrustante : pH_{eq} pH *in situ* < 0,3

LPLWin affiche dans la feuille d'étape, l'intitulé et la classe de l'eau considérée. Les limites fixées par défaut sont celles qui sont indiquées dans l'arrêté du 23/01/2007. Le logiciel permet de modifier ces valeurs notamment si un nouvel arrêté venait à en modifier les limites. La modification peut s'effectuer soit en cliquant sur les flèches situées à gauche de la zone de saisie (pas de 0,05 unité pH) soit en entrant directement la nouvelle valeur dans la zone de saisie.

Attention: le logiciel SISE-Eaux, des laboratoires, utilise une autre classification selon PH in situ - pHeq.

- •1re classe DGS = classe 2 SISE : eau à l'équilibre calcocarbonique : $0,2 \le pHeq pH$ in situ $\le 0,2$
- •2e classe DGS = classe 3 SISE : eau légèrement agressive : 0,2 < pHeq pH in situ $\le 0,3$

•3e classe DGS = classe 4 SISE : eau agressive : 0,3 < pHeq - pH in situ

•4e classe DGS = classe 1 SISE : eau légèrement incrustante : - 0,3 \leq pHeq - pH in situ < - 0,2

•5e classe DGS = classe 0 SISE : eau incrustante : pHeq - pH in situ < - 0,3

3-5-1-6) Pression de CO₂ :

La valeur communément admise de la pression partielle de CO_2 dans l'atmosphère est de 3/10 000 bar. C'est la valeur prise par défaut dans ce logiciel. Toutefois, il est possible de la modifier ici, soit en entrant directement la nouvelle valeur dans la fenêtre de saisie, soit en cliquant sur les flèches ascendante ou descendante situées à la gauche de celle-ci. Le pas d'avancement de chaque clic est de 1/10 000 bar ; il est possible d'affiner la valeur en entrant la pression de CO_2 avec le nombre de décimales souhaité, même si dans les fenêtres de traitement où il est indiqué la valeur de cette pression il n'apparaît que 5 chiffres après la virgule. La modification de la pression de CO_2 peut être intéressante lorsque l'on veut simuler l'évolution de l'eau dans un milieu clos ou semi-clos, tel qu'un réservoir notamment.

3-5-1-7) Nombre de boucles :

Le calcul de l'incertitude sur les résultats utilise la méthode dite de Monté Carlo qui consiste à faire varier les données d'entrée de manière aléatoire autour de la valeur d'entrée (moyenne) puis de recalculer les résultats. Les écarts à la moyenne sont alors enregistrés puis traités pour donner l'écart type. La précision de cet écart type dépend du nombre de valeurs utilisées et donc de boucles de calcul avec des données légèrement modifiées. La valeur par défaut du nombre de boucles a été fixée à 2 000. Cette valeur permet d'obtenir une bonne estimation de l'écart type dans un délai de temps raisonnable (qui peut varier légèrement en fonction des caractéristiques ? de l'eau). Il en résulte une certaine variation des résultats qui ne concerne que le deuxième ou troisième chiffre significatif. Ainsi, si l'utilisateur souhaite obtenir une précision plus grande, il devra modifier cette valeur jusqu'à atteindre la précision voulue. Le pas d'avancement correspondant à chaque clic sur les flèches situées sur la gauche est de 100. Mais l'amélioration de la précision ne sera significative que si le nombre de boucles de calcul est porté à 5 000 ou 10 000.

Influence du nombre de calculs sur la précision de l'estimation

Nous avons choisi de fixer à 2 000 le nombre de calculs nécessaire à l'estimation de la précision des résultats. Ce choix devait être validé par des simulations réalisées avec des nombres de calculs différents. Nous avons donc choisi de réaliser un grand nombre d'essais (évaluations de l'incertitude) avec 200, 500, 2 000, 5 000 et 20 000 calculs.

Nb boucles	200 B	500 B	2000 B	5000 B	20000 B
Maxi	33,79	29,66	27,1	26,81	26,41
Mini	21,6	23,33	24,68	25,25	25,49
Moyenne	26,119	26,082	25,928	26,003	25,992
Ecart type	2,039	1,220	0,5814	0,3134	0,2248
Médiane	26,215	26,145	25,97	26,01	26,04
Max - Min	12,19	6,33	2,42	1,56	0,92
(Max-min)					
/2xmoyen	36,5 %	12,1 %	4,6 %	3,0 %	1,8 %
E T / Mo	7,8071 %	4,6778	2,24223	1,20535	0,864879
Nb					
d'essais	500	350	300	300	50
Nb total de					
calculs	100 000	175 000	600 000	1 500 000	1 000 000

Les résultats obtenus sont donnés dans le tableau I

Tableau I

On peut voir dans ce tableau que l'écart entre les valeurs les plus grandes et les plus petites, diminue fortement de 200 jusqu'à 2 000 calculs (de 36,5 % à 4,6 %) puis ne varie que très faiblement lorsque l'on augmente de nombre de calculs (de 4,6 % pour 2 000 calculs, à 1,8 % pour 20 000 calculs). Cette évolution est reportée sur la figure 1.

Le rapport entre les écarts types et les moyennes suit la même évolution (figure 2)

Figure 2

Ainsi on peut considérer qu'avec une estimation de l'incertitude réalisée avec 2 000 calculs le résultat sera connu à un plus de 2 % près.

Sachant qu'avec un ordinateur muni d'un processeur duo à 1,73 GHz, le calcul de la précision avec 2 000 calculs nécessite environ 20 à 30 s, le rapport précision / temps de calcul est tout à fait admissible.

3-5-1-8) Choix du produit de solubilité du carbonate de calcium

Le carbonate de calcium cristallise généralement sous trois formes allotropiques différentes (la calcite, l'aragonite et la vatérite) qui présentent des solubilités différentes. La moins soluble est la calcite, la plus soluble est la vatérite. Si la vatérite est la moins courante, les deux autres formes sont très répandues. En règles générale, on observe la précipitation de calcite sur une paroi en acier à la température ambiante, l'aragonite se forme principalement sur une paroi chaude ou sur une paroi en acier inoxydable. Mais il est rare de constater la précipitation de calcite ou d'aragonite pure, mais le
plus souvent les deux formes précipitent simultanément et leur proportion varie en fonction notamment de la température.

Ainsi, dans la réalité, l'utilisation de la constante moyenne (indiquée 'Général') est la plus pertinente puisqu'elle n'est pas spécifique de l'une ou l'autre des formes allotropiques. On peut, dans certains cas, être amené à connaître l'état calcocarbonique d'une eau vis-à-vis d'une forme allotropique précise (cas d'expériences de laboratoire par exemple). LPLWin permet donc de choisir la valeur de la constante de solubilité correspondant à la calcite, l'aragonite ou encore à la vatérite. Pour ce faire, il suffit de cliquer sur la variété de CaCO₃ souhaitée. Le calcul s'effectue alors avec la constante correspondante et la forme allotropique choisie est rappelée dans la colonne 'Unité' du tableau de résultats sur la ligne *SatuRatio*.

	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	re Unité
Température	16,2	°C		ΣCations	6,132	me/I	pН	7,29	7,39		pН	8,73	
Conductivité	600	µS/cm	492	ΣAnions	6,132	me/l	Delta pH	-0,71	-0,61		Delta pH	0,73	
pН	8			Balance	0,	%	ACaCO ₃		-21,8	mg/l	Δ CO ₂	-2,821	mg/l
тн	c 26,	٩f	5,2	H,CO	4,841	mg/l	TAC	16,5	14,323	٩f	TAC	16,5	٩f
ТА		٩f		HCO;	199,046	mg/l	H _{CO} ;	24,926	17,385	mg/l	H,CO	0,866	mg/l
TAC	16,5	٩f	3,3	CO3-	1,013	mg/l	HCO;	200,857	174,222	mg/l	HCO;	189,87	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ Total	3,358	mM/I	CO ₃ ²⁻	0,2	0,215	mg/l	CO3-	5,154	mg/l
Calcium	4,86	me/l	4,86	λ	0,78		CO ₂ Total	3,698	3,14	mM/I	CO ₂ Total	3,212	mM/I
Magnésium	0,34	me/l	0,34	SatuRatio	5,05	Calcite	∆CO₂t	0,34	-0,218	mM/I	∆CO ₂ t	-0,146	mM/I
Sodium	0,347	me/l	0,347	Туре	Calcificate	-	Calcium	97,2	88,48	mg/l	Saturatio	25,68	
Potassium	0,085	me/l	0,085	SatuCO2	5,59		SatuCO2	28,79	20,08		Туре	Calcifiante	
Ammonium	1,8	mg/l	0,097	Nom:			à		1	1			
Fer divalent	0,1	me/l	0,1					T <u>r</u> acer	Impri	mer	<u>M</u> ode de	dosage du 1	F.A.C.
Manganèse	0,3	me/l	0,3								-		
Chlorure	0,789	me/l	0,789		Calculer		<u>e</u>	<u>T</u> raiter	Ferr	ner	Calcu	ul d'incertitud	es
Sulfate	1,302	me/l	1,302										
Nitrate	0,241	me/l	0,241	C		ر د ما محمد محمد ا	en Earlie	eruetante f		*	Indice	s et Constan	tes
Nitrite	0,1	me/l	0,1	Classe die	au seion ia h	eglementa		iciustante (,		o or constan	
Fluorure	0,4	me/l	0,4										
Oxvoène diss.	c 9,85	mg/l	100,0	Fichier:									

S'agissant d'un calcul optionnel, le choix de la forme allotropique n'est pas sauvegardé lorsque l'on quitte LPLWin, l'option par défaut étant toujours l'option 'Général'. Toutefois, la forme allotropique choisie est sauvegardée dans le fichier correspondant à l'eau étudiée et est donc rappelée lorsque l'on charge le fichier de l'eau. Ceci permet par exemple d'effectuer le calcul initial avec une constante puis de changer de constante pour un traitement ultérieur (étape 1, 2, ..., 9).

Une fois les valeurs modifiées il suffit de cliquer sur « Confirmer » pour enregistrer les valeurs et quitter le menu options. Si l'on ne souhaite pas enregistrer les valeurs modifiées et si l'on souhaite quitter le menu options, il suffit de cliquer sur « Annuler ».

On peut être amené à modifier temporairement une ou plusieurs valeurs. Le retour aux valeurs fixées par défaut se fait en cliquant sur « Réinit. Limites », puis il est nécessaire de cliquer sur « Confirmer » pour enregistrer ces modifications.

3-5-1-9) Choix de la température d'expression de la conductivité

Selon la norme ISO 7888 de 1985, la conductivité est exprimée à 25 °C. Ainsi, LPL exprime par défaut la conductivité calculée à 25 °C. Mais, il n'en a pas toujours été ainsi et avant 1985 la conductivité était exprimée à 20°C. De ce fait, certaines données d'archive sont exprimées à une température différente de 25°C. LPL permet de modifier la température d'expression de la conductivité : 25°C, 20°C ou toute autre température. Dans ce dernier cas une fenêtre apparaît permettant de saisir la valeur souhaitée.

La température d'expression de la conductivité est sauvegardée dans le fichier avec les données saisies et calculées de l'eau.

3-5-2) Unités d'entrée...

Le menu « Unités d'entrée » permet de fixer les unités utilisées pour la saisie. Cette option permet un gain de temps appréciable lorsque les unités sont homogènes (tous les titres exprimés dans la même unité, toutes les autres concentrations exprimées dans la même unité). Mais si l'homogénéité n'est pas totale, il est possible de modifier l'unité d'un ou plusieurs paramètres directement dans la feuille de saisie des valeurs.

Les diverses unités utilisées par LPLWin sont visibles dans les sept pavés supérieurs :

- 1. Unités des titres utilisées pour les titres hydrotimétrique et alcalimétriques : degrés français (°f), degrés allemands (°D), ppm de CaCO3 et milliéquivalents par litre (me/l),
- 2. Unités des concentrations utilisées pour les concentrations des ions à l'exception du calcium et du magnésium : mg/l, me/l et millimoles par litre (mM/l),
- 3. Unités de concentration du CO₂ libre : mg/l (exprimée en CO₂ de masse moléculaire = 44) ou mM/l
- 4. Unités de concentration du calcium : mg/l, me/l, mM/l ainsi que °f, °D et ppm,
- 5. Unités de concentration du magnésium : mg/l, me/l, mM/l ainsi que °f, °D et ppm,
- 6. Unités des températures : degrés centigrades (°C) et degrés Fahrenheit (°F),
- 7. Unités de la conductivité /résistivité : micro-Siemens par cm pour la conductivité et Ohmscentimètres pour la résistivité.

Les unités fixées par défaut sont les degrés français pour les titres, les mg/l pour les concentrations des ions y compris Ca et Mg, les degrés centigrades pour la température et les micro-siemens pour la conductivité. Le choix des unités se fait en cliquant sur les boutons situés à gauche des intitulés.

Nota : Les unités d'entrée sont choisies par défaut pour la saisie des titres et concentrations finales dans la fenêtre de choix des traitements.

Un dernier pavé situé en bas de la feuille d'options permet de choisir le mode de dosage du TAC. En effet, ce titre peut être mesuré par potentiométrie (pH-métrie) avec une détection du virage au point d'inflexion (méthode rigoureuse mais non normalisée) ou par titrimétrie à l'aide d'un acide et détection du point équivalent par virage d'un indicateur coloré (méthode normalisée). Dans ce cas le TAC doit être corrigé de l'écart entre la valeur exacte et celle qui est mesurée. Pour cela il est nécessaire de connaître le pH de virage utilisé.

Ces options permettent de prédéterminer le mode de dosage par défaut utilisé pour le TAC, sans avoir à le préciser dans la feuille de saisie. Il suffit de choisir l'option « point équivalent » pour le dosage pH-métrique ou sinon il convient de préciser la valeur du pH de virage (4,5 par défaut).

L'ensemble des options doit ensuite être validé en cliquant sur « Confirmer ». Ce boutonpermet d'enregistrer les modifications et de quitter le menu. Si l'on ne souhaite pas apporter de modification il convient de cliquer sur « Annuler ».

3-5-3) Unités de sortie...

Comme pour la saisie des données, il est possible de choisir les unités qui seront utilisées pour la restitution des données après les calculs. Le choix des unités de sortie est totalement indépendant de celui des unités d'entré. Il est donc possible de saisir par exemple une température en degrés centigrades et de choisir que la température soit affichée après calcul en degrés fahrenheit.

LPLWin - Unités des	résultats de calc	uls		
Unité des titres (TA, T	rAC, TH) C me/] C ppm CaCO3 Unités de Concent. CO2 libre C mg/l	Unités de Concent Calcium Img/Img/Img/Img/Img/Img/Img/Img/Img/Img/	Unités de Concent Magnésium © mg/l © me/l © mM/l © °f © °D © ppm CaCO3	Unité des températures C °C C °E Unité de la conductivité C µS/cm C Ohm.cm
C mg/l Confirmer Ces unités seront l'affichage des rés calculs.	mM/I <u>Annuler utilisées pour sultats des </u>	Unités de Concent. H2C03* r mg/l H2C03* r mg/l C02 r mM/l	Eléments Carbonique CO2T C mM/1 C mg/1CO2	S Delta CO2T (© mM/I (© mg/I CO2

Les diverses unités utilisées par LPLWin sont visibles dans les huit pavés :

- 1. Unités des titres, utilisées pour les titres hydrotimétrique et alcalimétriques : degrés français (°f), degrés allemands (°D), ppm de CaCO3 et milliéquivalents par litre (me/l),
- 2. Unités des concentrations, utilisées pour les concentrations des autres paramètres : mg/l, me/l et millimoles par litre (mM/l),
- 3. Unités de concentration du CO₂ libre : mg/l (exprimée en CO₂ de masse moléculaire = 44) ou mM/l
- 4. Unités de concentration du calcium : mg/l, me/l, mM/l ainsi que °f, °D et ppm,
- 5. Unités de concentration du magnésium : mg/l, me/l, mM/l ainsi que °f, °D et ppm,
- 6. Unités des températures : degrés centigrades (°C) et degrés Fahrenheit (°F),
- 7. Unités de la conductivité /résistivité : micro-Siemens par cm pour la conductivité et Ohmscentimètres pour la résistivité,
- 8. Unités des éléments carboniques (à partir de la version 5.27).

Les unités fixées par défaut sont les degrés français pour les titres, les mg/l pour les concentrations, les degrés centigrades pour la température et les micro-siemens pour la conductivité. Pour les éléments carboniques non ionisés ($H_2CO_3^*$, CO_2T et Delta CO_2T), on peut choisir soit les mM/l soit les mg/l CO_2 (masse moléculaire =44). On peut toujours exprimer $H_2CO_3^*$ en mg/l $H_2CO_3^*$ (masse moléculaire = 62) et cette unité apparaît clairement dans la feuille de résultats (voir exemple page suivante).

Le choix des unités se fait en cliquant sur les boutons situés à gauche des intitulés.

Si l'on souhaite enregistrer les modifications apportées il suffit de cliquer sur le bouton « Confirmer », sinon, cliquer sur « Annuler ».

Le traitement "mise en unités de sorties" permet d'uniformiser les unités sans modifier l'analyse.

Remarque :

Lorsque les calculs ont été effectués, deux boutons apparaissent sur la feuille de calcul permettent d'afficher les données au format des données d'entrée ou de sortie.

	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèn	Unit
Température	16,2	°C		ΣCations	5,639	me/I	pH	7,46	7,41		pН	8,76	
Conductivité	c 574	µS/cm	471	ΣAnions	5,832	me/l	Delta pH	0,24	0,18		Delta pH	1,53	
н	7,62		7,22	Balance	3,36	%	ACaCO ₃		14,832	mg/l	Δ CO ₂	-21,517	mg,
ГН	c 26,000	of	5,200	H _{CO} ;	31,186	mg/I H2CO	TAC	17,500	18,983	-1	TAC	17,500	-1
A		٩f		HCO;	213,135	ma/	H,CO;	17,925	22, 19	mg/I H2CO	H,CO;	0,866	mg/l
FAC	17,5	٩f	3,500	CO2-	0,179	mg/l	HCOT	212,860	230,983	mg/i	HCOT	201,565	mg/i
CO, libre	22,	mg/l	0,500	CO ₂ Total	4,000	mM/I	CO3-	0,311	0,298	mg/l	CO3-	5,778	mg/l
Calcium	97,2	mg/l	4,860	λ	0,680	mM/I	CO, Total	3,784	4,148	mM/I	CO ₂ Total	3,415	mM/
Magnésium	4,131	mg/l	0,340	SatuRatio	0,58		∆CO₂t	-0,216	0,148	mM/I	∆CO₂t	-0,585	mM/
Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,200	103,133	mg/l	Saturatio	18,52	
Potassium	3,315	mg/l	0,085	SatuCO2	36,02		SatuCO2	20,7	25,55		Туре	Calcifiante	
Ammonium	0,	mg/l		Nom:			a l	_	1				
Fer divalent	0,2	mg/l	0,007					Tracer	1	mprimer	<u>M</u> ode d	le dosage du	T.A.C
Manganèse	0,	mg/l		·									
Chlorure	28,01	mg/l	0,789		<u>C</u> alculer		<u>e</u>	<u>T</u> raiter		F <u>e</u> rmer	Calo	cul d'incertitu	des
Sulfate	62,496	mg/l	1,302										
Nitrate	14,942	mg/l	0,241	Classe d'au		á al a an am ta tí a	" Faulégè	rem anress	(CL 2)/Ca	<u>r</u>	Indic	es et Consta	ntes
vitrite	0	mg/l		C10336 0 60	iu sciofi la hi	sylementatiu	- Lauriogo	ionii agross	. (o. 2)rod	Ŭ.			
Fluorure	0	mg/l										_	
Dxyonène diss.	8,00	mg/l	81,3	Fichier:									

3-5-4) Incertitudes

Le calcul des incertitudes des résultats peut être effectué en utilisant soit :

- Les incertitudes des seuls paramètres fondamentaux (température, pH ou TA ou CO₂ libre, TAC et calcium),
- Les incertitudes des paramètres fondamentaux et des ions caractéristiques divalents (Mg et SO4) qui ont une forte influence sur la force ionique,
- Les incertitudes del'ensemble des paramètres fondamentaux et caractéristiques majeurs.

Il est possible de choisir l'étendue des paramètres utilisés en cliquant sur l'une des trois options de la zone 'choix des paramètres'.

LplWin	LplWin
LpIWin Options de calcul d'incertitudes Choix des paramètres Paramètres fondamentaux Euls Paramètres fondamentaux Paramètres fondamentaux Paramètres fondamentaux Paramètres fondamentaux Température ± 2.0 PH ± 0.20 TAC ± 2.0 TAC ± 2.0 Y1 Calcium ± 2.0 Yalider Annuler Béinit.	LptWin Options de calcul d'incertitudes Choix des paramètres Paramètres fondamentaux Seuls Paramètres fondamentaux Paramètres fondamentaux Température ± 2.0 °C pH ± 0.20 TAC ± 2.0 °f CO2 libre ± 5.0 mg/l TA ± 2.0 °f Calcium ± 2.0 mg/l Valider Annuler
Options de calcul d'incertitudes Choix des paramètres Paramètres fondamentaux TAC ± 20 11 Co2 libre ± TA ± Zol mg/l Value Value	s fondamentaux instiques divalents istres caractéristiques divalents istur $\pm 1,0$ mg/l Sulfate $\pm 1,0$ mg/l iters caractéristiques monovalents $\pm 2,0$ mg/l Chlorure $\pm 2,0$ mg/l ider Annuler Réinit.

Selon l'option choisie la fenêtre découvre les paramètres sélectionnés ainsi que les incertitudes fixées par défaut.

Il est possible d'adapter ces incertitudes aux performances du laboratoire, en saisissant ces incetitudes. Puis en cliquant sur « Valider » LPLWIN enregistre les nouvelles valeurs.

Ces valeurs seront sauvegardées et resteront utilisées lors d'un nouveau lancement deLPLWIN.

La touche « Reinit. » restitue les valeurs par défaut qui redeviendront actives en validant ce nouvel ensemble.

3-5-5) Importation

Ce sous-menu permet d'enregistrer les choix de l'utilisateur sur les noms des paramètres, le nombre de champs utilisés, la définition des lignes/colonnes des noms de paramètre et des unités.

La zone 'Configuration du tableau' permet de définir :

- L'organisation des données en lignes ou en colonnes,
- Le nombre total de champs à balayer pour obtenir l'ensemble des données (il ne peut être inférieur à 20),
- Le numéro de la ligne/colonne des champs des intitulés des paramètres,
- Le numéro de la ligne/colonne des champs des unités.

Image: Construint ligned Nombre de champs 20 N° de L/Loi des legendes 1 Image: Construct of Données sur une colonne N° of L/Coi des unités 2							
Intitulés des lég	gendes						
Température	Température	Calcium	Calcium	Sulfate	Sulfate		
Conductivité	Conductivité	Magnésium	Magnésium	Chlorure	Chlorure		
pН	рН	Sodium	Sodium	Nitrate	Nitrate		
тн	ТН	Potassium	Potassium	Nitrite	Nitrite		
TA	TA	Ammonium	Ammonium	Fluorure	Fluorure		
TAC	TAC	Fer divalent	Fer divalent	02 dissous	Oxygène		
CO2 libre	CO2 libre	Manganèse	Manganèse				
Température Conductivité Titres Concentration I	°C μS/cm °f D2 mg/l	rg/l	Concent. des majeurs sauf Concentration Concentration Concentration	ions Ca et Mg mg/l n Ca mg/l n Mg mg/l n CO2L mg/l	mg/l mg/l mg/l		
Concentration	is des ions minec	µg/I Equivalent à µg/I A utiliser pour : ☐ ND2- ☐ F-					

La zone 'Intitulés des légendes' permet de fixer les noms sous lesquels les paramètres ont été indiqués dans le tableau Excel.

La zone 'Intitulés des unités' permet de préciser les noms ou abréviations fixées par l'utilisateur pour les unités dans le tableau Excel. Il convient aussi de préciser l'unité correspondante qui est reconnue par LPLWIN. Cette tâche est facilitée par l'apparition d'un pop up qui rappelle les seules abréviations reconnus par LPLWIN, lorsque la souris se déplace sur la fenêtre de saisie (cas du magnésium dans la figure ci-dessous).

Température T	Equivalent à	Concent. des ions majeurs sauf Ca et Mg mg/l	Equivalent à	
Conductivité µS/cm	µS/cm	Concentration Ca mg/l	mg/l	
Titres f	۴	Concentration Mg mg/l	mg/l	
Concentration 02 mg/l	mg/l	Concentration CO2L mg/l	ent 'mg/l' ou 'mM/l' ou 'n mg/l	ne/l" ou "⁰f" ou "⁰D" ou "ppm"
Concentrations des ions mine	A utiliser	F NH4+ F F pour: F N02- F	e2+ 🔽 Mn2+ F-	
⊻alider		innuler B	éinitilisation	

Il suffit ensuite de valider pour enregistrer le format des importations adopté. Si les équivalences des unités ne sont pas reconnues par LPLWin, une alerte apparaît lors de la validation.

	CO2 libre	CO2 libre	Manganèse	Manganèse
ſ	Intitulés des u	nités	Equivalent à	LplWin 5 🛛 🔀
	Température	°C	°A	Saisir "°C" ou "°F" pour l'unité équivalente de température
	Conductivité	µS/cm	µS/cm	<u> </u>
	Titres	°f	۴	ок
	<u> </u>	<u>/</u> alider		Annuler <u>B</u> éinitilisation

Il est alors nécessaire de corriger cette donnée pour enregistrer les modifications. Celles-ci sont sauvegardées et utilisables après un nouveau lancement de LPLWin.

La version 5.20 et les versions ultérieures permettent de présélectionner les $\mu g/l$ pour les concentrations des éléments mineurs (Fe^{II}, Mn, NH₄, NO₂ et F).

On peut comme précédemment indiquer l'intitulé des unités choisi par l'utilisateur (ovale bleu) et sélectionner les paramètres concernés (rectangle rouge).

Température degré ° Conductivité μ/μS/cm	Equivalent à [°] C μS/cm	Concentrations des ions majeurs et du mg/1 CO21 Concentration O2 mg/1	Equivalent à
Fitres of Fitres	eurs // A utiliser po	ur: ☐ NH4+	+ ▼ Mn2+
⊻alider	<u>A</u> n	nuler <u>B</u> éir	itilisation

3-5-6) Pureté des réactifs

Il est aussi possible de fixer les puretés des divers réactifs utilisés pour les traitements. Cette option évite de ressaisir les puretés des réactifs ainsi que les valeurs de « n ». La sélection de cette option fait apparaître la fenêtre suivante :

.PLWin5									
Pureté des ré	éactifs								
Réactifs	Pureté (%)		Réactifs		Pureté (%)	CaCO	3 (%)	Ĩ	
Sodiques		CaC	CaCO3, nMgO		CaCO3, nMg0 100 71,2		1,2		
NaOH	100	CaC	CaCO3, nMgCO3		100	54,2			
NaHCO3	100				Al2O3 (%)		n		
Na2CO3	100	Al2(9	Al2(SO4)3, 18H2O		15,3	1	18		
Na2SO3	100	P	Polymères. Alum.		Al2O3 (%)	Basicité (%			
Calciques		Poly	Poly Alum CI (PAC)		30	4	45		
Ca(OH)2	100	Poly	Poly Alum SO4 (PAS)			30	2	45	
CaCO3	100	,							
CaSO4	100	Béactife	Tit	re Init (a	л	Titre util	(តភា	2 N :	лн [
CaCl2	100	NaCIO		110	<i>i</i> 1j	110	(9/1)	1	5
Acides		Béactife		2 CI2		110			
HCI	30		•	70					
H2SO4	98	<u> ca(ci0)z</u>		70			_		
Autres				1		1			1
KMn04	100	⊻al	ider		∆r	nuler		<u>R</u> éinit.	
FeCl3	30								

Pour modifier la pureté ou le « n » ou ..., il suffit de :

Cliquer sur la case à modifier ; la sélection est confirmée par l'apparition d'un pointillé autour de la case

Calciques		
Ca(OH)2	100	
CaCO3	100)
CaSO4	100	
CaCl2	100	H=C
Acides		Nac

Appuyer sur la touche « effacer » (←) pour faire disparaître la valeur affichée

Saisir la nouvelle valeur puis valider.

La validation permet de sauvegarder l'ensemble de ces informations lorsque l'on quitte LPLWin. Elles seront ainsi conservées pour une utilisation ultérieure.

La touche « Réinit. » permet de restituer les valeurs fixées par défaut.

Remarque :

A partir de la version 5.17 il n'est plus nécessaire de saisir le « n » du sulfate d'aluminium. La concentration de sulfate d'aluminium dans la poudre ou dans la solution commerciale est toujours exprimée en pourcentage d'Al₂O₃. La seule saisie de cette valeur suffit pour définir la pureté du produit commercial.

Ainsi un pop up apparaît pour signaler l'inutilité de « n » lorsque le pointeur de la souris passe sur la case du « n » du sulfate d'aluminium.

Afin de guider l'utilisateur qui ne connait pas la teneur en Al2O3 du sulfate d'aluminium en poudre, un pop up rappelle que si la poudre ne contient que du sulfate d'aluminium (Al2(SO4)3, 18 H2O) la concentration théorique en Al2O3 est de 15,3%.

AI203 (%)	n	
15,3	18	
Al203 (%)	Basicité (%)	
30	45 Non ut	ilisé
30	45	
	Al203 (%) 15,3 Al203 (%) 30 30	Al203 (%) n 15.3 18 Al203 (%) Basicité (%) 30 45

	Al203 (%)	n	
Al2(SO4)3, 18H2O	15,3	18	
Polymères <u>. Alum.</u>	AI203 (%)	Basicité (%)	
Poly Alum CI (F Correspond	à pureté =100	% de Al2(504)3,18 H2O
Poly Alum SO4 (PAS)	30	45	

D'autre part, à partir de la version 5.20, il n'est plus nécessaire de calculer la valeur de « n » de la dolomie ou de la dolomie calcinée. Les fournisseurs de ces réactifs donnent généralement la teneur en carbonate de calcium et le taux d'impureté. Il convient donc de saisir ici le pourcentage de CaCO3 du produit commercial et le pourcentage de pureté (pureté (%) = 100 - impuretés (%). Les valeurs correspondant à n = 1 sont données par défaut (CaCO3 % = 71,2 % pour la dolomie calcinéee et CaCO3 % = 54,2 % pour la dolomie). Un pop up rappelle cette correspondance si les valeurs indiquées sont 71,2 pour CaCO3, nMgCO3.

Pureté (%)	CaCO3 (%)	
100	71,2	
100	54,2	
AI203 (%)	_ n	
15,3	Correspond	à "n" = 1
AI203 (%)	Basicité (%)	
20	45	

Remarques importantes :

- Les fournisseurs de dolomie peuvent donner la teneur en CaO et non en CaCO₃. Dans le cas où la valeur donnée est exprimée en CaO, il convient de corriger la valeur entrée dans LPL d'un facteur 100/56 pour tenir compte de l'expression en CaCO3.
- 2) La détermination du « n » prend en compte la pureté du réactif : La teneur en MgCO₃ ou en MgO est obtenue par la différence entre la pureté et la teneur en CaCO₃.

Par exemple une dolomie contenant 54,2 % de CaCO3 et une pureté de 100 % aura une teneur en MgCO3 de 100 - 54,2 = 45,8 % et son « n » sera de 1,0. Si la pureté est de 90 % la teneur en MgCO3 sera égale à 90 - 54.2 = 35,8 % et son « n » sera alors de 0,78

3-5-7) Langue...

Cette option permet de choisir la langue utilisée.

qui sont calculées après modification de la langue seront en anglais.

On a le choix entre l'anglais (Grande Bretagne), l'anglais (Etas Unis d'Amérique) ou le Français. Pour changer de langue il suffit de cliquer sur le drapeau correspondant puis de cliquer sur « Ok ». Hormis la barre de menu qui est modifiée immédiatement après la validation, cette option n'a pas d'effet rétroactif et ne modifie que les affichages antérieurs à la modification : si une eau a été saisie ou chargée en français, la feuille de saisie reste en français. Seules les fenêtres de choix des traitements et les étapes

3-6) Menu ?

Permet d'obtenir de l'aide et le numéro de version via le sous menu « A propos de ».

4) LA FEUILLE DE SAISIE ET DE CALCUL (Etape 0)

4-1) Généralités

LPLWin peut gérer deux eaux différentes, dont les paramètres sont entrés soit directement dans la feuille de saisie soit par importation sécurisée à partir d'un fichier Excel. Il est aussi possible d'importer les données à partir d'une base de données fichiers « .edb » ou d'un fichier de données « .dat ». Mais dans ces deux derniers cas, la cohérence des unités n'est pas contrôlée.

La feuille de saisie se présente comme indiqué sur la figure ci-dessous :

Après avoir précisé les unités utilisées pour la saisie dans le menu « Options », on peut faire apparaître la feuille de saisie vierge soit en cliquant sur « Nouveau » dans le menu « Fichier » soit en cliquant sur « Saisir » dans le menu « Analyse ». Dans le premier cas le numéro de l'eau est automatiquement fixé par le logiciel à 1 si aucune eau n'est déjà à l'écran et à 2 si une première eau a déjà été chargée. Dans le deuxième cas l'utilisateur a la possibilité de choisir le numéro de l'eau.

Le numéro de l'étape est toujours fixé à 0, qui est l'étape initiale (les autres étapes sont des étapes de traitement).

4-2) L'entrée des données

Les données peuvent être soit saisies directement au clavier soit importées à partir d'un fichier Excel, un fichier de données (.dat) ou d'une base de donnée (.idb).

La saisie au clavier

Remarque préalable : Le séparateur décimal peut, selon les régions du monde, être une virgule (0,1) ou un point (0.1). MS Windows, dans les options régionales, permet de choisir le type de séparateur. LPLWin accepte indifféremment les deux types : virgule ou point. Mais le séparateur des milliers peut être, selon les pays, soit un espace (« 10 000 ») soit une virgule (« 10,000 »). Ne pouvant distinguer la fonction de la virgule (séparateur décimal ou séparateur des milliers), LPLWin ne peut gérer que l'espace pour les milliers. Il est donc nécessaire de ne pas séparer les milliers (10000) ou à la rigueur de n'utiliser que l'espace (10 000) et non la virgule ($\frac{10,000}{10,000}$).

La saisie des valeurs des concentrations des 20 paramètres s'effectue en cliquant à l'aide de la souris sur la case correspondant au paramètre dans la troisième colonne du tableau de gauche (encadré rouge). Il convient de saisir impérativement :

- ➢ La Température,
- Le pH ou le CO₂ libre (exprimé en CO₂ de masse moléculaire 44) ou le TA si celui est mesurable (pH > environ 8.3) ; seule une de ces trois valeurs est nécessaire au calcul,

- Le TH ainsi que le Calcium et/ou le Magnésium, LPLWIN calculera alors la donnée manquante,
- Au moins 5 valeurs des 6 paramètres majeurs (Magnésium, Sodium, Potassium, Chlorure, Sulfate et Nitrate); LPLWin peut en effet, estimer la concentration du sixième ion, s'il est manquant, par l'écart entre le total des anions et celui des cations. S'il s'agit du calcium ou du magnésium et si le TH n'est pas saisi, il estimera cette concentration par différence entre le total des anions et le total des cations connus. Il ne peut toutefois, qu'être recommandé de disposer de l'ensemble des résultats afin de pouvoir contrôler efficacement l'homogénéité des résultats,
- Les concentrations des 5 éléments mineurs (ammonium, fer divalent, manganèse divalent, nitrite et fluorure) ou si l'on n'en dispose pas il convient d'entrer des zéros (0) dans les cases correspondantes ; il convient d'ailleurs de noter que le logiciel porte automatiquement des zéros dans les cases des concentrations de ces ions lorsque l'on charge la grille de saisie (comme montré sur la figure ci-dessus)
- La concentration de l'oxygène dissous qui peut être exprimée soit en mg/l soit en pourcentage de la saturation (% Sat) par rapport à l'air à la température de l'eau ; si l'on ne dispose pas de cette valeur, il convient de ne pas renseigner cette case, LPL affichera après calcul la concentration correspondant à la saturation.

Nota : La saisie des concentrations des 5 éléments mineurs est une nouvelle fonction d'LPLWin qui permet de tenir compte des réactions qui peuvent apparaître notamment avec les traitements d'oxydation (chlore, ozone, permanganate ou oxygène atmosphérique) ou encore pour le fluorure dont la concentration peut ne pas être totalement négligeable (cas de certaines eaux « minérales » ou d'eaux issues de régions situées sur des roches primaires).

La saisie du TH est souhaitable afin de vérifier la cohérence de l'analyse, même si l'on dispose des concentrations du calcium et du magnésium. Elle est impérative si l'on ne dispose pas de l'une de ces deux valeurs (calcium ou magnésium).

Enfin, la conductivité (ou la résistivité) peut être utilement saisie afin notamment de permettre une validation complémentaire de l'analyse.

Rappel : L'expression de la conductivité dans les bulletins d'analyse doit être donnée à une température normalisée. Si la norme actuelle est de 25°C, cela n'a pas été toujours le cas : elle est mesurée à 20°C depuis le années 1950 jusque dans les années 1990 et auparavant elle était mesurée à 18°C. Ces changements d'expression de la conductivité ne sont pas toujours suivis par les distributeurs d'eau qui souhaitent, au moins dans leurs archives, pouvoir suivre facilement l'évolution de la minéralisation des ressources qu'ils exploitent.

Compte tenu de la précision du calcul de la conductivité par LPLWin5, on peut tenir compte de la température de mesure de ce paramètre.

Il convient, pendant ou après la saisie des valeurs des concentrations de vérifier que les unités dans lesquelles sont exprimées ces concentrations sont bien celles qui sont affichées dans les cases situées à droite de chaque valeur. On peut changer les unités présélectionnées en cliquant sur la case de l'unité à modifier. Dans ce cas une liste des unités disponibles apparaît :

 $[\]succ$ Le TAC,

Température Conductivité pH TH TA TAC CO, libre Calcium Magnésium	Valeur	Unité en me ℃ µS/cm of of of mg/l mg/l	Σ Cations Σ Anions Balance H ₂ CO [*] CO [*] CO [*] CO, Total λ	Résultats	Unité	Equilibres pH Delta pH ACaCO_ TAC H_CO_ H_CO_ CO_ CO_ CO_ Total ACO_t	Ca Cst.	Marbre	Unité	Equilibre pH Delta pH A CO, TAC HCO, CO, CO, CO, Total ACO,t	Atmosphère Unité
Sodium Potassium Ammonium Fer divalent Manganèse	0	me/l mM/l *f *D ppm mg/l	Type SatuCO2 Nom:			Calcium SatuCO2	T <u>r</u> acer	Įmpri	mer	Saturatio Type <u>M</u> ode de	e dosage du T.A.C.
Chlorure Sulfate Nitrate Nitrite	0	mg/l mg/l mg/l mg/l	Classe d'ea	<u>C</u> alculer au selon la Ré	églementa	ation	∐raiter	F <u>e</u> rr	ner	Calor In <u>d</u> ice	ul d'incertitudes es et Constantes
Fluorure Oxygène diss.	0	mg/l	Fichier:	ļ							

Il suffit de cliquer deux fois de suite (double clic) sur l'unité choisie pour la valider ou bien de la sélectionner en cliquant une fois et appuyer sur la touche « entrer » ou « retour chariot » du clavier. Cette liste glisse alors automatiquement à la case suivante. Pour quitter la liste il suffit d'appuyer sur la touche « Esc » (échappement) ou de cliquer sur une des cases de saisie des concentrations.

Sécurité et contrôles de saisie

Par défaut la saisie des données est sécurisée par deux contrôles complémentaires successifs :

A) Le premier se fait en cours de saisie : si l'on entre une concentration supérieure aux limites données dans le tableau ci-dessous un message d'erreur apparaît.

🗩 Eau: 1 Et	aŗ	be: 0	LP	WIN XX	xxxx	x						
		Valeur	Unité	en me/l			Equi	ilibres	Ca C			
Température	Г	16,2	°C		ΣCat	pН		7,5				
Conductivité		600	µS/cm	492	ΣAnions 6,132 me/					Delta pH		0,49
pН		7			Bala	nce	0,	%		ΔCa	1CO,	
TH	c	26	٩f	5,2	H _C C);	48,954	mg/l		TAC	>	16,5
TA			٩f		HCO	;	201,077	mg/l		ңc	0;	15,6
TAC		16,5	×	3,3	dco2		0 102	mal		HCC	2	200,
CO ₂ libre	c.	34,742	mg	0,79	LpIW	'in 5				×	-	0,318
Calcium		620	mg	4,86	-					-	Total	3,54
Magnésium		4,131	prg/l	0,34							D₂t	-0,5
Sodium	Г	7,901	mg/l	0,347		\ ^u	oncentration	nors gan	nn	ie.	ium	97,2
Potassium		3,315	mg/l	0,085		-					CO2	18,0
Ammonium		1,8	mg/l	0,1		ſ	OK				a (
Fer divalent		2,8	mg/l	0,1		3						Līace
Manganèse		8,25	mg/l	0,3		_						_
Chlorure		28,01	mg/l	0,789						Ľ,		Traite
Sulfate		62,496	mg/l	1,302					-	(Ves		_
Nitrate		14,942	mg/l	0,241	Class			(. C.		Failar	vaceis
Nitrite		4,6	mg/l	0,1	Lias	se dea	u selon la ne	sglementa	300	m	lead as	JICOM
Fluorure	L	6,8	mg/l	0,4								
Oxygène diss.	c	9,85	mg/l	100,0	Fich	nier:						
Unités d'E	Unités d'Entrée Unités de Sortie											

Paramètre	Temp	C (µS/cm)	pН	TH (°f)	TA	TAC	CO ₂ L.	Calcium	Magnésium	Sodium
	(°C)				(°f)	(°f)	(mg/l)	(mg/l)	(mg/l)	(mg/l)
Mini.	0	0	2	0	0	-5	0	0	0	0
Maxi.	85	100 000	13	200	200	200	4 400	600	500	900
Paramètre	Potassium	Ammonium	Fer II	Mn II	Chlorure	Sulfate	Nitrate	Nitrite	Fluorure	Oxygène
Paramètre	Potassium (mg/l)	Ammonium (mg/l)	Fer II (mg/l)	Mn II (mg/l)	Chlorure (mg/l)	Sulfate (mg/l)	Nitrate (mg/l)	Nitrite (mg/l)	Fluorure (mg/l)	Oxygène (mg/l)
Paramètre Mini.	Potassium (mg/l) 0	Ammonium (mg/l) 0	Fer II (mg/l) 0	Mn II (mg/l) 0	Chlorure (mg/l) 0	Sulfate (mg/l) 0	Nitrate (mg/l) 0	Nitrite (mg/l) 0	Fluorure (mg/l) 0	Oxygène (mg/l) 0

L'objectif de ce contrôle est d'éviter de saisir des concentrations élevées qui ne sont que très rarement constatées dans les eaux douces naturelles et qui pourraient conduire à une force ionique supérieure à 0,1 (valeur limite des hypothèses des auteurs pour la validité des constantes de dissociation).

Il convient de remarquer que :

Le TAC peut être négatif (jusqu'à -5 °f). La saisie d'un TAC négatif est interprété par LPLWin comme un titre en sels d'acides forts (SAF) non nul qui correspond à la présence d'acides libres dans l'eau qui peut être constaté lorsque le pH est inférieur à environ 4,5. Il convient d'indiquer que la saisie d'un TAC négatif doit impérativement être accompagnée de la saisie de la concentration du CO₂ libre. En effet, la mesure du pH n'est pas suffisamment précise pour pouvoir calculer avec une précision raisonnable la concentration du CO₂ total. Cette fonction de LPLWin est nouvelle dans la version 5 et

permet d'explorer tout le graphique de Legrand et Poirier, y compris dans la région I (à gauche de la verticale du point S).

- La concentration maximale admise du CO₂ libre est très élevée (4 400 mg/l ou encore 100 mM/l) pour permettre de saisir et traiter des analyses d'eaux carbo-gazeuses.
- La concentration maximale de sulfate tolérée est de 1 400 mg/l ; elle correspond environ à la concentration d'une solution saturée de sulfate de calcium. De même la concentration maximale du calcium est de 600 mg/l, qui est aussi celle d'une solution saturée de sulfate de calcium.
- B) Le deuxième est réalisé au début du calcul. Durant ce contrôle LPLWin vérifie que les données indispensables ont bien été saisies :

Absence du calcium (ou du TH qui permet d'estimer le calcium)

Il vérifie ensuite que les concentrations des différents ions ont été saisies et que la balance ionique peut être estimée. S'il manque au moins deux concentrations d'ions ce calcul ne peut être fait ; dans ce cas un message d'erreur apparaît :

Il vérifie aussi la cohérence des données saisies et notamment le rapport entre le TA et le TAC qui ne peut être supérieur à l'unité.

🗊 Eau: 1 Et	ape: O	LPWIN XX	xxxxxx 🔳 🖬 🕻
Température Conductivité pH TH TA TAC	Valeur 16,2 600, 7 22 16,5	Unité en me/l ℃ µS/cm of of	Résultats Unité Equilibres Ca Cat. Marbre Unité Equilibre Atmosphère Unité PH PH
CO ₂ libre Calcium Magnésium Sodium Potassium	97,2 4,131 7,981 3,315	mg/l mg/l mg/l mg/l mg/l	Saisie incomplète ou incorrecte. TA supérieur au TAC.
Ammonium Fer divalent Manganèse Chlorure Sulfate	2,8 8,25 28,01 62,496	mg/i mg/i mg/i mg/i	Nom: Imprime
Nitrate Nitrite Fluorure	14,942 4,6 6,8	mg/l mg/l mg/l	Classe d'eau selon la Réglementation Indices et Constantes
Oxygène diss.	<u></u>	_img/1	j Fichier: j

Si l'on saisi un TAC négatif, il vérifie que la concentration du CO₂ libre a bien été saisie. Dans le cas contraire, un message d'erreur signale ce défaut.

	Valeur	Unité en me/l	Résultats Unité Equilibres Ca Cst. Marbre Unité Equilibre Atmosphère U
Température	16,2	°C	ΣCations pH pH
Conductivité	600,	µS/cm	ΣAnions Delta pH Delta pH
pН	7		
тн		of	LpIWin 5
ТА		3	
TAC	-1	of	Cajaja ja semplita su ja sevente TAC < 0 + la CO2 libra deit janérati sement êtra sajaj l
CO ₂ libre		mg/1	salse incomplete du incorrecte. TAC < 0 : le CO2 libre doit imperativement et e salsi !
Calcium	972	mg/l	
Magnésium	4,131	mg/l	ОК
Sodium	7,981	mg/l	
Potassium	3,315	mg/l	Satucoz Satucoz
Ammonium	1,8	mg/l	Nom:
Fer divalent	2,8	mg/l	Tracer Imprimer Mode de dosage du T.A
Manganèse	8,25	mg/l	
Chlorure	28,01	mg/l	Calculer Calcul d'incertitudes
Sulfate	62,496	mg/l	
Nitrate	14,942	mg/l	Classe d'agui aglan la Réglementation
Nitrite	4,6	mg/l	
Fluorure	6,8	mg/l	
Ovvoène diss		mg/l	Fichier:

Si l'on a saisi un TA supérieur à zéro et un pH inférieur à 8,3, un message d'erreur signale cette incohérence.

	Valeur	Unité en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre A	tmosphère Uni
Température	15,2	°C	ΣCations			pH				pH	
Conductivité	600,	µS/cm	ΣAnions			Delta pH				Delta pH	
н	7		Balance			ACaCO,					
гн		of								TAC	
ГА	2	of	LplWin 5							H ₂ CO ₃ *	
TAC	16,5	f								HCO;	
CO ₂ libre		mg/l		Saisie incompl	ète ou inc	orrecte, pH e	t TA incomp	atibles.		CO3-	
Calcium	97,2	mg/l								CO ₂ Total	
Magnésium	4,131	mg/l								∆CO₂t	
Sodium	7,981	mg/l			OK					Saturatio	
Potassium	3,315	mg/l								Туре	
Ammonium	1,8	mg/l	Nom:			à	_				
Fer divalent	2,8	mg/l					Tracer	Imprim	er	<u>M</u> ode de de	osage du T.A.C
Manganèse	8,25	mg/l							_		
Chlorure	28,01	mg/l		Calculer		ല	Traiter	Ferme	er	Calcul d	l'incertitudes
Sulfate	62,496	mg/l									
Nitrate	14,942	mg/l	Classe d's	ou colon la P	óalomont	ation			_	Indices e	
Nitrite	4,6	mg/l	Classe d e	au seion ia n	egiementa	adon				1100000	. cometantoo
Fluorure	6,8	mg/l									
		ma/l	Fichier								

Si l'on a saisi le pH et le TA ou bien le pH et le CO_2 libre, un message d'alerte s'affichera au début du calcul, demandant si l'on souhaite que le calcul soit effectué en utilisant la valeur du pH ou bien celle du TA ou du CO2 libre.

Eau: 1 Etape: 0 LPWIN XXXXXXX	Eau: 1 Etape: 0 LPWIN XXXXXXXX
Termentum 10-2 Califore Print Califore Califore Conductive Califore Califore Califore Califore Califore Conductive Califore Califore C	Place 1 Flage: 0 UNIX SXXXXXXX Value Unite Immediate Unite Calcon Place Decision Decision Decision D

Lorsque la réponse est 'Oui', les résultats s'affichent avec la mention « u » sur la ligne du TA ou du CO2 libre afin de rappeler les paramètres utilisés.

		Valeur	Unité	en me/l
Température	Γ	16,2	∘⊂	
Conductivité	Ľ	600	µS/cm	492
pН	L	7,0		8,19
тн	с	26,	٥f	5,2
TA	c		۴f	
TAC		6,5	0	3,3
CO, libre	u	0,7	n/g/l	0,016
Calcium	Г	97.2	hail	4.86

1			L	Vale.	ır	Unité	en me/l	
1	2.02	Température		16,2		°C		ΣCa
	Σ.An	Conductivité		600		µS/cm	492	ΣAn
1	Bala	pН		8,5		~	8,8	Bala
1	HCC	тн	с	26,		٥f	5,2	HJCC
1	HCO	TA	u	0,5		of	0,1	HCO
1	CO	TAC		16,5		٥f	3,3	CO_3^2
	CO.	CO ₂ libre	с	0,513		mg/l	0,012	CO,
	2	Calcium	Ľ	97.2		ma/l	4.86	2

Un pop up rappelle que le TA (ou le CO2 libre) a été utilisé lorsque le pointeur de la souris passe sur la case du TA (ou du CO2 libre).

		Valeur	Unité	en me/l	
empérature	Π	16,2	°C		ΣC
onductivité		600	µS/cm	492	ΣA
н		7,0		8,19	Ba
н	с	26,	٩f	5,2	ЦC
A	с		٥f		HC
AC		16,5	°f	3,3	co
O ₂ libre	u	0,7	mg/l	0,016	CO
alciun		07.0		4.00	λ
le CO2		T,IJI	night po	Ur le calcul	Sa
_					

sur la case du	TA (ou	u		JZ I	ibre).									
		1	Valeur	Unité	en me/l			_				_		
	Température	Π_1	16,2	°C		ΣCa		Val	eur	Unité	en me/i			
	Conductivité	e	600	µS/cm	492	ΣAn	Température	16,2	2	°C		ΣCa	1	
	pН	17	7,0		8,19	Bala	Conductivité	600		µS/cm	492	ΣAr	2	
	тн	c 2	26,	٩f	5,2	Hice	pН	8,5			8,8	Bala	2	
	TA	c		٩f		HCO	ТН	c 26,		٩f	5,2	H,CO	<u>c</u>	
	TAC	1	16,5	٩f	3,3	CO ₂	TA	u 0,5		٩f	0,1	HCC	2	
	CO ₂ libre	u (0,7	mg/l	0,016	COz	TAC Le TA	A a été	utilisé	pour le	calcul	CO ₃		
	Calcium	2 lib	07.0 07.0 0 6té i	tilicó po	ur le calcul	λ	CO ₂ libre	c 0,5	13	mg/l	0,012	CO,		
	Magnésion		7,1J1	ing/i	U, JT	Satu	Calcium	97,2	2	mg/l	4,86	λ		
D'autre part,	le pH ca	al	culé	s'at	ffiche	en italique dan	s la colo	nn	e de	es 'r	ne/l'	et u	in pop up rappela	nt
and it all a same de	10			TT.	- 1 1	6 annanaît lana		int	~ ~ ~ ~	1.1			an démlana ann an	4.

qu'il s'agit de la valeur du pH calculé, apparaît lorsque le pointeur de la souris se déplace sur cette case.

	I.	Valeur	Unité	len me/l	L				_
Température	r	16,2	•C		1	ΣCa			
Conductivité	1	600	µS/cm	492		ΣAn		Température	L
рH	1	7.0	17	8.19	1	Bala		Conductivité	L
тн	le	26.	-1	5.2	1	17100		рН	L
TA	le		08	/ pH c	3IC	THCO		тн	c
TAC	I.	16,5	of	3,3	1	CO3		TA	L
CO, libre	L	0,7	mg/l	0,016		co.		TAC	
Calcium	1	97,2	mg/l	4,86	Γ	r		CO ₂ libre	c
Maonésium	ľ	4.131	ma/l	0.34	1	Satu		Calcium	E
Sodium	1	7.981	ma/l	0.347	1	Тур		Magnésium	ſ
Potassium	1	3.315	ma/l	0.085	1	Satu		Sodium	ſ
Ammonium	1	1.8	ma/l	0.096	1	Nom		Potassium	ſ

Cati
ΣAnic
Bala
ulé co
HCQ;
±0;
CO ₂ T
λ
Satul
Туре
SatuC

Si la réponse est 'Non', la valeur du TA ou du CO2 libre est remplacée par la valeur calculée et la mention « c » apparaît sur la ligne du paramètre modifié.

🕒 Eau: 1 Ete	ipe: O	LP		xxxxx														
	Valeur	Unité	en me/l		Résultats	Unité	Equil	ibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	re Unité				
Température	16,2	•C		ΣCations	6,132	me/l	pH		7,5	7,59		pH	8,73					
Conductivité	600	µS/cm	492	ΣAnions	6,132	me/l	Delta	ı pH	-1,01	-0,92		Delta pH	0,23					
pН	8,5			Balance	0,	%	∆Ca	co,		-20,961	mg/l	A CO _z	-0,444	mg/l				
тн	c 26,	of	5,2	H,CO ₂	1,491	mg/l	TAC		16,5	14,409	٥f	TAC	16,5	of				
TA	c 0,189	٥f	0,038	HCO;	194,335	mg/l	H,CC	2	15,659	11,077	mg/l	H,CO2	0,866	mg/l				
TAC	16,5	٥f	3,3	CO3-	3,135	mg/l	HCO	;	200,594	174,961	mg/l	HCO;	189,87	mg/l				
CO. libre	c 1,058	mg/l	0,024	CO ₂ Total	3,262	mM/i	CO2		0,318	0,34	mg/l	CO3-	5,154	mg/l				
Calcium	97,2	mg	4,86	λ	0,78		CO2	Total	3,546	3,052	mM/I	CO ₂ Total	3,212	mM/I				
Magnésiona	4,131	mg/l	0,34	SatuRatio	9,85		ACC	,t	0,284	-0,21	mM/I	∆CO₂t	-0,05	mM/I				
Sodium	7,981	mg/l	0,347	Туре	Calcifiante	2	Calc	um	97,2	88,816	mg/l	Saturatio	16,17					
Potassium	3,315	mg/l	0,085	SatuCO2	1,72		Satu	002	18,08	12,79		Туре	Calcifiante					
Ammonium	1,8	mg/l	0,092	Nom:			ð	1	-	1				1				
Fer divalent	2,8	mg/l	0,1					1	I lacer	Įmpri	mer	Mode de	dosage du	T.A.C.				
Manganèse	8,25	mg/l	0,3				1											
Chlorure	28,01	mg/l	0,789		Calculer		200		<u>T</u> raiter	Ferr	ner	Calcu	il d'incertitud	les 🛛				
Sulfate	62,496	mg/l	1,302															
Nitrate	14,942	mg/l	0,241	Classe d'ea	au selon la B	éalement	ation	Eau in	crustante (Cl. 51/Ca C:	st	Indice	s et Constan	ites				
Nitrite	4,6	mg/l	0,1	0.0000 000		ogionioni	anori			,								
Fluorure	6,8	mg/l	0,4															
Oxygène diss.	8,00	mg/l	81,3	Fichier:														
Unités d'Ei	ntrée Uni	tés de S	ortie					Unités d'Entrée Unités de Sortie										

Enfin, LPLWin vérifie que la force ionique est conforme aux hypothèses des auteurs (<0,1), dans le cas contraire le calcul s'arrête et un message d'erreur apparaît :

Nota : Dans le cas qui doit rester exceptionnel, où l'eau analysée présente une ou plusieurs concentrations dépassant les limites fixées ou bien si l'eau présente une force ionique supérieure à 0,1, il peut être malgré tout intéressant de pouvoir mener à bien les calculs. Il convient de savoir que dans ces conditions hors hypothèses, les résultats ne peuvent pas être considérés comme exacts et fiables. Une possibilité de lever les limites décrites ci-dessus est offerte dans le menu « Options » « Calcul », en cochant l'option 'sans contrôle de l'analyse saisie' (option non sauvegardée à la fermeture de LPLWin). Mais l'utilisateur devra veiller à ce que les données entrées soient exactement conformes au bulletin d'analyse, au risque de voir apparaître un message d'erreur générale conduisant à la fermeture du logiciel.

L'importation des données à partir d'Excel

L'importation directe de données préenregistrées est possible. On peut utiliser un fichier de données établi sous Excel (voir menu « Analyse » « Importer Données (xls) ») ou un fichier de données (.dat) ou encore un fichier de base de données (.idb).

Il convient de préciser que seule l'importation à partir de fichiers Excel est sécurisée, permettant de vérifier les intitulés des paramètres ainsi que les unités utilisées. L'utilisation de fichiers de données suppose que les paramètres soient ordonnés dans le même ordre que celui qui est affiché dans LPLWin et que les unités correspondent à celles qui sont sélectionnées (il est malgré tout possible de modifier les unités si elles sont connues de l'utilisateur en procédant comme il a été indiqué au chapitre '<u>La saisie au</u> clavier'.

Les vérifications de la saisie des données seront réalisées selon la procédure décrite au chapitre précédent, mais resteront limitées aux contrôles réalisés lors du lancement du calcul.

4-3) La Saisie du nom de l'eau

Il est possible d'identifier l'eau étudiée en inscrivant dans la fenêtre 'Nom :' un texte d'identification. Ce texte apparaîtra dans les étapes de traitement dans le bandeau bleu supérieur et, après sauvegarde et rappel du fichier. Ce texte est centré sur la fenêtre jusqu'à 20 caractères. Il est possible d'étendre ce texte à 60 caractères. Mais il ne sera pas visible totalement dans la fenêtre. Toutes les lettres et chiffres disponibles au clavier sont acceptés. Pour valider le texte il convient d'appuyer sur la touche 'Entrer' (,...).

4-4) Mode de dosage du TAC

Cette fonction qui peut être préprogrammée par le menu « Options » « Unités d'entrée » est accessible aussi à partir de la feuille d'étape 0. Ceci permet pour une eau donnée de modifier la méthode de dosage et de l'adapter au cas de l'eau sans pour autant avoir à changer les options de calcul.

La procédure est la même que pour l'option unités d'entrée.

Nota : Si le calcul a déjà été effectué auparavant, le changement de méthode de dosage entraîne l'annulation du calcul précédent et donc l'effacement de l'ensemble des résultats affichés.

4-5) Fermer

L'activation de la commande 'Fermer' :

Fait disparaître la feuille de saisie SANS sauvegarde des données déjà entrées, si le calcul n'a pas été effectué

Fait apparaître un message d'alerte demandant la confirmation de l'effacement des données et des calculs, si le calcul a été effectué sans être sauvegardé,

Fait disparaître la feuille de calcul, si le calcul il a été effectué et que la sauvegarde à été faite.

4-6) Calculer

L'activation de la commande « Calculer » lance le calcul. Avant que les résultats s'affichent, plusieurs messages d'alerte peuvent apparaître successivement :

4-6-1) Le TAC corrigé est négatif

Ce message apparaît lorsque le TAC est très faible (< 1°f) et si le mode de dosage nécessite une correction (virage à pH 4,5 ou 4.3 par exemple) qui entraîne une correction supérieure au TAC saisi. Le TAC négatif obtenu indique que le point figuratif de l'eau est alors situé dans la région I du graphique à gauche du nez de la courbe d'équilibre.

4-6-2) Tout traitement de mise à l'équilibre à la soude est impossible

Ce message apparaît lorsque l'eau présente des concentrations en calcium et en CO_2 total très faibles. En effet, si le produit [Ca] [CO₂ total] est plus petit que Ks, l'ajout de soude, même s'il est très grand, et conduit à transformer tout le CO_2 total en carbonate et ne peut pas permettre d'atteindre l'équilibre. Dans ce cas le réactif soude

n'apparaîtra pas dans la liste des réactifs permettant d'atteindre l'équilibre.

4-6-3) Pas d'eau à l'équilibre ayant le même Calcium

LplWin	5	
⚠	Pas d'eau à l'équilibre ayant le même CA	
	ОК	

Ce message apparaît lorsque le point figuratif de l'eau est situé à gauche de la verticale du nez de la courbe, c'est-à-dire que la concentration du calcium est inférieure à celle du calcium minimum. Dans ce cas, la mise à l'équilibre ne peut être obtenue par traitement d'échange de CO_2 avec l'air ; ainsi le réactif CO_2 n'apparaîtra pas dans la liste des réactifs utilisables pour la mise à l'équilibre calcocarbonique.

4-6-4) La balance ionique dépasse la limite fixée

Ce message est le résultat du test de contrôle de la balance ionique et apparaît lorsque celle-ci dépasse la valeur fixée dans le menu « Options » « Calcul ».

4-6-5) Le delta conductivité/résistivité calculée – saisie dépasse la limite fixée

LPLWin estime la valeur de la conductivité (ou de la résistivité) à partir des conductivités équivalentes limites de chacun des ions présents en tenant compte de l'effet de la force ionique. Lorsqu'une valeur de conductivité (ou de résistivité) est saisie, le logiciel compare les deux valeurs et le message apparaît si l'écart est supérieur à la limite fixée dans le menu « Options » « Calcul ».

4-6-6) Le pH théorique calculé est différent du pH saisi

Lorsque l'on a saisi la valeur du pH et celle du CO₂ libre, LPLWin calcule les caractéristiques de l'eau avec, de préférence, la valeur du CO₂ libre et compare ensuite les résultats obtenus avec la valeur du pH saisi. Si l'écart est supérieur à 0,01 unité pH le message apparaît.

4-6-7) Ignorer le pH (utiliser le CO2 libre) ?

Lorsque l'on a saisi le pH et le CO2 libre, LPLWin demande quel paramètre doit être utilisé pour le calcul sachant que ces deux valeurs sont redondantes. Si l'on choisit d'ignorer le pH (réponse « Oui ») le calcul s'effectuera en utilisant bien évidemment le CO2 libre et la feuille de résultats fera apparaître un « u » dans la deuxième colonne en face du CO2 libre pour rappeler que ce paramètre a été pris pour les calculs. D'autre part, la valeur du pH calculé apparaît en italique dans la colonne « en me/l ». Le pH saisi reste affiché dans la colonne « Valeur » afin de garder une trace de la saisie et de pouvoir la comparer à la valeur calculée.

📴 Eau:	1 Etape:	:0 I	au filtrée	LPW	VIN v5.:	21 s:4377	3050							X	Température	Valeur 12.8	Unité	en me/l	Σ Cations	Résultats	Unité me/	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphè	re Unité
	1/2	aleur				Pérultate	Linté	Equilibre	Co Cet	Marbos	Linité	Equilibre	átmos obère I k	46	Conductivité	535	u3/cm	40.2	Σ Anions	5,551	me/	Delta pH	0,28	0,21		Delta pH	1,55	
Tempéra	10e 12		onite ferrinen	2	Cations	resultats	Onte	DH	Galosi	Marore	Unite	oH	Autosphere of		рн	c 7,6		7,23	Balance	-2,38	%	ACaCO,	.,	18,684	mg/l	Δ CO ₂	-24,467	mg/l
Conducti	/16 539	35	iS/cm	2	Anions			Delta pH				Delta pH			TH	c 25,545	*	5,109	H,CO;	35,42	mg/l	TAC	19,1	20,968	of	TAC	19,1	of
oH	7.6	6		B	lalance			ACaCO				A CO.			TA		٩f		HCO;	232,645	mg/l	H,CO;	18,738	23,987	mg/l	H,CO;	0,943	mg/l
TH		_	f	н	100			TAC				TAC			TAC	19,1	× .	3,82	CO3-	0,182	mg/l	HCO;	232,316	255,148	mg/l	HCO;	220,371	mg/l
TA			f	Ĥ	co;			H.CO.				HCO;			CO, libre	u 25	mg/	0,568	CO ₂ Total	4,388	mM/I	CO3"	0,343	0,325	mg/l	CO;"	6,146	mg/l
TAC	19,	0.1	of	0	0:			HCO;				HCO:			Calcium	95,1	mo	4,755	λ	0,468		CO ₂ Total	4,116	4,575	mM/I	CO ₂ Total	3,73	mM/I
CO, libre	25	5	ma/l	0	O. Total							CO:			Magnésium	42	mg/l	0,354	SatuRati	0,53		∆CO ₂ t	-0,272	0,187	mM/I	∆CO₂t	-0,658	mM/I
Calcium	95,	5,1	ng/	2			LpIW	in 5			\times	CO, Total			Sodium	11,6	mg/l	0,504	Туре	Agressive		Calcium	95,1	102,573	mg/l	Saturatio	17,83	
Magnési	m 4,3	3	ng/l	S	atuRati	io						ΔCO,t			Potassium	2,8	mg/l	0,072	SatuCO2	37,56		SatuCO2	19,87	25,44		Туре	Calcifiante	
Sodium	11,	1,6	ng/l	T	ype		2	Tanarer	le oH (utilie	er CO2 Libre	12	Saturatio			Ammonium	0	mg/l		Nom:	E au filtre	ie	8	-	1	. 1			
Potassiu	n 2,8	8	ng/l	S	atuCO2		\checkmark	/ Ignorei	ie pri (uuis		"	Туре			Fer divalent	0	mg/l						l lacer	Impr	Imer	Mode de	dosage du	T.A.C.
Ammoniu	m 0		ng/l	N	om:	E au filtr	á .				h				Manganèse	0	mg/l				- 1							
Fer divale	nt 0		ng/l			Launia	° (Oui	1	lon		Mode de	e dosage du T.A.C	:	Chlorure	24	mg/l	0,676		Galculer		<u>n</u>	<u>I</u> raiter	Fen	mer	Calcu	I d'incertitud	Jes
Manganè	se 0		ng/l				· ·				- H				Sulfate	27	mg/l	0,563								-		
Chlorure	24	+	ng/l			Calculer	_	巴	Iraiter	Fer	mer	Calc	ul d'incertitudes		Nitrate	28	mg/l	0,452	Classe d'e	au selon la F	éalementz	ation Eaul	égèrem, agr	ress. (Cl. 2)/	'Ca C	Indice	s et Constar	ntes
Sulfate	27	7	ng/l	_											Nitrite	0	mg/l				ogramation							
Nitrate	28	3	ng/l		Classe de		2 é clamant	ation			_				Fluorure	0,7	mg/l	0,041										
Nitrite	0		ng/l		0.0000 0.0		regionieri	00011							Oxygène diss.	8,00	mg/l	75,5	Fichier:	Exercice_	3a.lpw							
Fluorure	0,7	7	ng/l																									
Oxygène	diss. 8,0	00	ng/I		Fichier:	Exercice	_3a.lpw								Unités d'E	ntrée Un	ités de S	ortie										
																			_	_	_	_	_	_	_	_	_	

Une fois le calcul terminé et les éventuels messages effacés en cliquant sur 'OK', la feuille d'étape 0 est complétée des résultats du calcul. De plus, certaines fonctions sont activées alors que la commande « Calculer » devient inactive :

4-7-	1)]]			Γ	- [4-7-	2)		4	4-7-3)	-	4-7-4)
🕼 LPLWin v	ersion 5.00													
Fichier Analys	se Visualiser	Rappor	: Options	; ?										
🗊 Eau: 1	Etape: 0	ų	WIN XX	xxxxxx	+						_	-		3
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphè	ere Unité	
Températur	16,2	°C		ΣCations	6,13	me/l	рН	7,5	7,55		pН	8,73		
Conductivite	600	µS/cm	492	ΣAnions	6,13	me/l	ACaCO,		-13,76	mg/l	<u>Δ CO,</u>	-2,82	mg/l	
<u>p</u> H	8	06	F 0	Balance	0,	%o	TAC	16,5	15,13	ΨT	TAC UCO*	16,5	ΨT	
TA	c 20,	-1	5,2	HCO-	100.05	mg/i	<u>n.co.</u>	15,00	12,34	mg/i	HCO;	190.97	mg/i	
TAC	16.5	of	3.3	CO2-	1.01	mg/i	CO2-	0.32	0.33	mail	CO2-	5 15	mg/i	
CO, libre	c 0.08	me/	0.08	CO, Total	3.36	mM/	CO, Total	3.55	3.22	mM/	CO, Total	3.21	mM/	i 📕
Calcium	4,86	me/	4.86	λ	0.78		ACO_t	0.19	-0.14	mM/I	ACO.t	-0.15	mM/I	i 📕
Magnésium	0.34	me/	0.34	SatuRatio	3.18		Calcium	97.2	91.7	ma/	Saturatio	16.17		i 📕
Sodium	0.347	me/l	0,35	Туре	Calcifiante		SatuCO2	18,08	14,48		Туре	Calcifiante		
Potassium	0.085	me/I	0,09	SatuCO2	5,59								-	
Ammonium	1.8	mg/l	0,1	Nom: Even	mple d'eau	"Beeai	and I		1	. 1				
Fer divalent	0.1	me/I	0,1	L'AC	inpic d cu	u cəəu		Tracer	Imp	imer	<u>M</u> ode de	e dosage du	T.A.C.	
Manganèse	0.3	me/I	0,3											
Chlorure	0.789	me/I	0,79		Calculer		<u>e</u>	<u>T</u> raiter	Fer	mer	Calc	ul d'incertitud	des	
Sulfate	1.302	me/I	1,3											
Nitrate	0.241	me/I	0,24	Classe d'ea	au selon la Bi	éalement	ation Eau in	icrustante	(Cl. 5)		Indice	es et Constar	ntes	
Nitrite	0.1	me/l	0,1											i 🔤
Fluorure	0.4	me/l	0,4									-		
				Fichies	U:\Docum	ents and	Settings\Pierre	Mes doc	uments\Doi	nnées Ana	alytiques\E xer	pie500.lp		
	10	`												
	4-0)												
L														

4-7) Les résultats du calcul

Quatre zones sont complétées :

4-7-1) Zone de saisie des paramètres

La zone de saisie est complétée des données exprimées en milliéquivalents dans la colonne de droite. Deux informations complémentaires apparaissent dans cette colonne :

a) La conductivité à la température de l'eau, que la conductivité (ou la résistivité) mesurée ait été saisie ou non :

🖓 Eau: 1 Et	aŗ	pe: 0		LP	WIN XX	Ø	XXXX					Zeau: 1 Eta	ap	be: 0	Exem	ole Versio	on	5 LPW	/IN XXXXX	xxx	
		Valeur	Uni	lé	enneñ			Résultats	Unité	E	qui			Vala		en me/l	-		Récultate	Linitá	E
Température		16,2	°C				ΣCations	6,13	me/l	pł	+	Cempérature		16.2	or ne	CITICA		Cations	6132	mal	
Conductivité		600	µS/	cm	492		ΣAnions	5,13	me/l	Δ	Ca	Conductivit	2	615	uS/cm	504		Σ Anions	6.111	me/	
рН		8		Co	nductivité a	à 1	6,2℃1 ce	0,	%	Τ/	٩C	H	Ì	7	Condu	ctivité calcu	lóc	à 16.2%	131	9/0	
TH	с	26,	of	-	5,2		Ч.00,	4,84	mg/l	н	C	лн ГН	2	26	Condo	E D		TCO	49 236	mal	Ē
ТА			٩f				HCO;	199,05	mg/l	н	CC	A	-	20,	of	5/2		HCOT	202 253	mg/i	l H
TAC		16.5	٩f		3,3		CO3-	1,01	mg/l	C	0	TAC.		16.5	of	3 319		CO ²⁻	0 103	mg/i	
CO ₂ libre	с	0,08	me/	1	0,08		CO, Total	3,36	mM/I	C	0,	C libre	6	0 794	me/	0 704		CO Total	4 111	mM/	
Calcium		4.86	me/	1	4,86		λ	0,78		Δ	C	alcium	-	4.86	mel	4.86)	0.77	ine qu	Ĭ
Magnésium		0.34	me	1	0,34		SatuRatio	3,18		C	alc	Acchi		0.24	me/i	0.24		A CatuRatio	0,77		
Sodium		0.347	me	1	0,35		Туре	Calcifiante		S	atu	agresium		0,34	me/i	0,34		Type	Agrossing		
Dotaccium		0.085	me	0	0.00		Satur002	5 50				Journ		0,547	iiie/i	0,347		туре	Agressive		

Cette information peut être utile, notamment pour l'évaluation de la corrosivité de l'eau dans les sols.

b) La concentration de l'ammonium ionique :

L'ammonium étant une base faible, son ionisation est fonction du pH de l'eau. Or les méthodes de dosage de l'ammonium fournissent toujours la concentration totale de l'ammonium de sorte que l'on ne peut saisir que l'ammonium total (figure B ci-dessus). Or, seule la partie ionisée de l'ammonium pèse dans la balance ionique rigoureuse. Il peut donc être intéressant de connaître la concentration de la forme ionisée (NH₄⁺) qui est fournie dans la colonne de droite (figure A ci-dessus). Toutefois, la partie non ionique (NH₃) est dosée dans le TAC. Il convient donc de tenir compte de cette surévaluation du TAC notamment pour les calculs du CO₂ total. Cette correction est bien entendu réalisée dans les calculs d'LPWin, mais elle n'apparaît pas dans la valeur du TAC qui reste tel qu'on l'a saisi.

D'autre part, les valeurs non saisies mais calculées par LPLWIN apparaissent maintenant dans le tableau de saisie annotés d'un 'c' (ovales bleus sur la figure a ci-dessus).

4-7-2) Résultats

Dans cette zone figurent les résultats qui portent sur la minéralisation globale de l'eau (somme des anions et somme des cations ainsi que l'écart entre ces deux sommes exprimé en pourcentage), puis les concentrations des éléments carboniques :

- L'acide carbonique (H₂CO₃ de masse moléculaire 62) qui est ici la concentration exacte de la forme non dissociée et qui correspond à la somme des deux formes hydratée et non hydratée (H₂CO₃ + CO₂) notée H₂CO₃*. La valeur ainsi calculée peut être légèrement différente de celle du CO₂ libre mesuré puisque cette dernière correspond à la somme :
- CO_2 libre = $[H_2CO_3] + [CO_2_{dissous}] + [H_3O^+] [CO_3^{2-}] [OH^-]$?
- L'ion hydrogénocarbonate (bicarbonate) (HCO₃-) qui est aussi la concentration exacte de cet ion,
- L'ion carbonate (CO₃²⁻) qui est la concentration exacte de cet ion. Elle peut différer sensiblement de celle du TA qui correspond à la somme :
- $TA = [CO_3^{2-}] + [OH^-] [H_2CO_3^*]$
- Le CO₂ total ou carbone minéral total (CMT) qui est égal à la somme :
- $CMT = [H_2CO_3] + [HCO_3] + [CO_3^2] + [CO_3^2]$

Puis est indiqué la valeur du paramètre λ caractéristique de l'eau étudiée qui correspond à la demi-somme algébrique des concentrations des ions caractéristiques :

$$\begin{split} \lambda = (N - P) \ / \ 2 = (\Sigma[Anions] - \Sigma[Cations) \ / \ 2] \\ Avec \ \Sigma[Anions] = 2 \ [SO_4^{2\text{-}}] + [Cl^{-}] + [NO_3^{-}] + [NO_2^{-}] + [F^{-}] \end{split}$$

Et Σ [Cations] = 2 [Mg²⁺] + [Na⁺] + [K⁺] + [NH₄⁺] + 2 [Fe²⁺] + 2 [Mn²⁺]

Expression dans laquelle les concentrations sont exprimées en milli-moles/litre.

Deux données concernant l'état calcocarbonique de l'eau sont fournies ensuite :

- Le *SatuRatio* qui correspond au rapport entre le produit de solubilité de CaCO₃ et la constante K'_s :
- $SatuRatio = [Ca^{2+}][CO_3^{2-}]/K'_s$

L'expression de l'état calcocarbonique qui peut être calcifiante, à l'équilibre ou agressive (les valeurs limites du SatuRatio définissant les caractéristiques de l'eau sont fixées dans le menu « Options » « Calcul »).

Enfin le *SatuCO2* qui est le rapport entre la concentration de $H_2CO_3^*$ et la concentration de CO_2 en équilibre avec la phase gazeuse permet de déterminer si l'eau peut ou non dissoudre le CO_2 gazeux.

4-7-3) Equilibre calco-carbonique

Dans cette zone apparaissent les caractéristiques de l'eau ramenée à l'équilibre calcocarbonique :

- A calcium constant, c'est-à-dire après dissolution ou perte de CO₂ avec la phase gazeuse, avec la quantité de CO₂ échangée (Δ CO₂) et la variation du CMT (Δ CO₂t) ainsi que le pH d'équilibre (pH_s de Langelier) ; cette colonne reste vide lorsque la mise à l'équilibre à calcium constant n'est pas possible (cas des eaux dont la concentration de calcium est inférieure au calcium minimum de la courbe d'équilibre)
- Après contact avec du carbonate de calcium (essai au marbre), avec les nouvelles concentrations de Calcium et de CMT ainsi que le TAC après contact avec le marbre, les quantités de CaCO₃ (Δ CaCO₃) précipité (négatif) ou dissout (positif) et de CMT échangé (Δ CO2t) ainsi que le pH d'équilibre après marbre.
- •

4-7-4) Equilibre avec le CO2 atmosphérique

Dans cette zone apparaissent les caractéristiques de l'eau ramenée à l'équilibre avec l'air :

- Le pH d'équilibre après perte ou dissolution de CO2
- La quantité de CO₂ (Δ CO₂) échangée pour atteindre cet équilibre, négative lorsque l'eau a perdu du CO₂ et positive lorsqu'elle en dissout,
- Le TAC de l'eau
- Les concentrations des 3 éléments carboniques (H₂CO₃*, HCO₃⁻ et CO₃²⁻),
- Le CMT (CO2t)
- La différence de CMT entre l'eau initiale et celle qui est obtenue après contact prolongé avec l'air, qui est négative si l'eau a perdu du CO₂ et positive si elle en a dissout,
- Le SatuRatio de l'eau en équilibre avec l'air,
- Le type calcocarbonique d'eau ainsi obtenu.

4-8) Les fonctions ou informations disponibles

Huit fonctions ou informations sont affichées ou activées :

4-8-1) Classe d'eau selon la réglementation

Le Ministère de la Santé, dans la circulaire du 23 janvier 2007, qui précise les arrêtés du 11 janvier 2007, indique que l'eau doit être à l'équilibre ou légèrement incrustante. Il fixe aussi 5 classes en fonction de la différence entre le pH d'équilibre et le **pH de l'eau mesuré in situ**. Toutefois, la circulaire ne précise pas explicitement si le pH d'équilibre à prendre en compte est le pH d'équilibre à calcium constant (pHs de Langelier) ou bien le pH d'équilibre après contact avec le marbre (pH après contact avec le carbonate de calcium ou encore appelé pH au marbre). Le choix du pH de référence est fixé dans le menu « Options » « Calcul ».

Les 5 classes d'eaux sont les suivantes :

1^{re} classe : eau à l'équilibre calcocarbonique : - $0,2 \le pH_{eq}$ - pH *in situ* $\le 0,2$

 2^{e} classe : eau légèrement agressive : $0,2 < pH_{\text{eq}} - pH$ in situ $\leq 0,3$

 3^{e} classe : eau agressive : 0,3 < pH_{eq} - pH *in situ*

4^e classe : eau légèrement incrustante : - $0.3 \le pH_{eq}$ - pH in situ < - 0.2

 5^{e} classe : eau incrustante : pH_{eq} - pH *in situ* < - 0,3

Ainsi, le type d'eau et la classe correspondante sont affichés dans la fenêtre 'Classe d'eau selon la réglementation'avec rappel du pH de référence choisi.

4-8-2) Impression

L'activation de cette fonction lance l'impression des résultats sur « l'imprimante par défaut » de WINDOWS. Un exemple d'impression est donné sur la figure de la page suivante. Nota : Pour changer d'imprimante, voir le panneau de configuration de WINDOWS.

Etape :	Fau: 1 Eta	ape: 0								
Nom ·	Exemple \	/ersion 5								
Fichier :	C:\Docum	ents and	Settings\F	Pierre\Mes doo	cuments\Me	s Docum	nents Profess	ionnels\Do	onnées Ar	nalytiqu
Classe d'eau	selon la ré	alementa	ation :	Eau agressiv	e (Cl. 3)/Ca	Cst				
oluobo u ouu		3.								
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unite
Température	16.2	°C		Σ Cations	6,132	me/l	pH	7,49	7,35	
Conductivité	c 615	µS/cm	504	ΣAnions	6,151	me/l	Delta pH	0,49	0,35	
pH	7			Balance	0,31	%	∆CaCO ₃		36,957	mg/l
TH	c 26,	°f	5,2	H ₂ CO ₃ *	49,236	mg/l	TAC	16,596	20,295	°f
TA		°f		HCO ₃	202,253	mg/l	H ₂ CO ₃ *	15,838	26,545	mg/l
TAC	16,5	of	3,319	CO32-	0,103	mg/l	HCO3	201,768	246,936	mg/l
CO, libre	c 0,794	me/l	0,794	CO ₂ Total	4,111	mM/I	CO3 ²⁻	0,318	0,287	mg/l
Calcium	4,86	me/l	4,86	λ	0,77		CO ₂ Total	3,568	4,481	mM/l
Magnésium	0,34	me/l	0,34	SatuRatio	0,32		∆CO ₂ t	-0,543	0,37	mM/
Sodium	0,347	me/l	0,347	Туре	Agressive		Calcium	97,2	111,983	mg/l
Potassium	0,085	me/l	0,085	SatuCO2	56,87		SatuCO2	18,29	30,66	
Ammonium	1,8	mg/l	0,1							_
Fer divalent	0,1	me/l	0,1				Equilibre	Atmosph	Unité	
Manganèse	0,3	me/I	0,3				pH	8,73		
Chlorure	0,789	me/l	0,789				Delta pH	1,73		
Sulfate	1,302	me/l	1,302				ΔCO_2	-34,327	mg/l	
Nitrate	0,241	me/l	0,241				TAC	16,596	of	
Nitrite	0,1	me/l	0,1				H ₂ CO ₃ *	0,866	mg/l	
Fluorure	0,4	me/l	0,4				HCO ₃	190,923	mg/l	
Oxygène diss	8,00	mg/l	81,2	J			CO32-	5,212	mg/l	-
							CO ₂ Total	3,231	mM/I	1
							∆CO ₂ t	-0,881	mM/I	-
							Saturatio	16,35		-
							Tuno	Calcifiante	4	1

4-8-3) Calcul d'incertitude

Cette nouvelle version d'LPLWin comporte un calcul de l'incertitude sur les résultats si l'on connaît les incertitudes sur les mesures de divers paramètres. La méthode utilisée est la « méthode de Monté Carlo » qui consiste à faire varier les paramètres saisis dans les intervalles d'incertitude puis de lancer le calcul un

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.57/136 grand nombre de fois et de calculer l'incertitude obtenue sur les résultats. Le nombre de calculs réalisés est fixé par défaut à 2 000 et peut être modifié dans le menu « Options » « Calcul ».

Tous les paramètres participent à l'erreur finale ; toutefois, on a limité leur nombre à ceux qui sont liés à la valeur même des constantes (c'est le cas de la température) et aux concentrations des éléments fondamentaux qui interviennent dans les équilibres, les autres paramètres (éléments caractéristiques) ne participant qu'au calcul de la force ionique n'ont qu'une influence très faible sur l'incertitude des résultats et sont donc négligés pour ce calcul d'incertitude.

L'activation de cette fonction fait apparaître une fenêtre qui tient compte des paramètres analytiques avec lesquels les calculs sont effectués :

	Certitudes sur les résultats de l'Eau (1 - Etape : 0) Résultats iempérature 16.2 1 C 4 16.5 10.20 1 C AC 16.5 10.20 1 Co2 raté 20 Libre = mp/l Satiration Co2 raté 20 Libre = mp/l Satiration Co2 raté 2 Libre = mp/l Satiration Co2 raté 2 alcium 197.2 2 (2000) mp/l Equilibre Quelle Imprimer ACO2 rate Co2 rate Co2 rate Diagnostice Etape 0 Type d'eau Agressive (2) Agressive (2) Calcianie (2) Lághement	Ids Ids téristiques de l'eau mM/L. 0/78 ±mM/L. mM/L. otel 3262 ±mM/L. mM/L. 10 9365 ± mM/L. 10 9365 ± mM/L. 10 9365 ± mM/L. 10 9365 ± mM/L. 175 ± 1759 ± 10 10 284 ± mM/L. Acacos 120.961 ± 10 284 ± mM/L. Acacos 100.91 ± Incrustante [2] mp/L.	2
Incertitudes sur les résultats de l'Eau : 1 - Etape : 0 Paramètres saisis Température 16.2 2.0 °C PH 8.5 2.00 °C Caractéristiques Diagnostic 15.5 0.20 °C Caractéristiques CO2 Libre ± 0.20 °I Coz Total 3.262 Saturatio 9.85 TA ± °I Coz Total 3.262 Saturatio 9.85 Coz Total 3.262 Saturatio 9.85 TA ± °I Coz Total 3.262 Saturatio 9.85 Coz Total 3.262 Calcium Full Loca Colour Full Loca Colour	Paramètres for	Incentitudes sur les résultais de l'éau: 1 - Ecope: Forcentitudes sur les résultais de l'éau: 1 - Ecope: Forcentitudes sur les résultais de l'éau: 1 - Ecope: Forcentitudes sur les résultais de l'éau: 1 - Ecope: Forcentitudes sur les résultais de l'éau: 1 - Ecope: Forcentitudes sur les résultais de l'éau: 1 - Ecope: Forcentitudes sur les résultais de l'éau: 1 - Ecope: PH 155 ± 0,20 ° TAC 16,55 ± 0,20 ° Car TAC 16,55 ± 0,20 ° Car CO2 Lère ± mg/l co: CO2 Lère ± mg/l Ecope: Suifate 162,265 ± 4,00 mg/l Jean Suifate 162,865 ± 4,00 mg/l Jean Polassium 3,315 ± 1,00 mg/l Jean Obsproxet: Eage Zoo mg/l Jean Polassium 3,315 ± 1,00 mg/l Agessive (3) Légèrement Agessive (3) Légèrement Agessive (3) Légèrement	0 C ssuidats

Paramètres fondamentaux et ions divalents Paramètres fondamentaux et caractéristiques

Un premier bloc (1) rappel les paramètres saisis et propose des incertitudes absolues qui sont modifiables en cliquant sur la zone de saisie précédée du signe (\pm). Les paramètres qui n'ont pas été saisis (dans le cas présent le CO₂ libre et le TA) sont grisés et inactivés.

Une fois que les incertitudes initiales ont été validées (après une éventuelle modification) il suffit de cliquer sur « Calculer » pour lancer les calculs itératifs.

Ces calculs peuvent durer plusieurs minutes. Une barre de progression (2) permet de suivre l'évolution des calculs.

Les résultats s'affichent ensuite dans les fenêtres blanches de la zone « résultats » (a) et de la zone « diagnostic » (b).

Incertitudes	sur les résultat	s de l'Eau : 1 -	France : 0
- Paramètres	saisis		Résultats
Température	16,2 ± 2,0	°C	Caractéristiques de l'eau
pН	8,5 ± 0,20)	Lambda 0,78 ± 0,06 mM/L
TAC	16,5 ± 0,20) *f	CO2 Total 3,262 ± 0,05 mM/L
CO2 Libre	± 📰	mg/l	Saturatio 9.85 ± 5.02
TA	±	۴	
Calcium	97,2 ± 2,00) mg/l	Equilibres Calcium Constant Marbre
Magnésium	4,182 ± 1,00) mg/l	pH equi 75 ± 0.05 759 ± 0.04
Sulfate	62,496 ± 4,00) mg/l	ACO2 Tet 0.284 ±0.05 ev4/ 0.21 ±0.04 mM/L
Sodium	7,981 ± 2,00	mg/l	
Potassium	3,315 ± 1,00) mg/l	ACaCO3 (20,301 - 3,36 marc
Chlorure	28,01 ± 2,00) mg/l	
Nitrate	14,942 ± 2,00) mg/l	Calculer Imprimer Eermer A A
Diagnostic	Etape u	1	Béglementation
Тур	e d'eau		
Agressive (%)	0,0	Agressive ((%) 0,0 Légèrement 0,0
Equilibre (%)	0,0	Légèremen	Equilibre (%) 0,0 Incrustante (%) 100.0
Calcifiante (%	100,0	Agressive ((2) 10,0 (10,000,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

Les incertitudes ainsi calculées (Résultats) portent sur :

- Les caractéristiques de l'eau : lambda, CO₂ total et *SatuRatio*,
- Les caractéristiques à l'équilibre à calcium constant (pH d'équilibre et Δ CO₂t),
- Les caractéristiques à l'équilibre après contact avec du marbre (pH d'équilibre, ΔCO_2t et $\Delta CaCO_3$).

Dans la zone « Diagnostic » s'affichent les pourcentages de résultats de calculs ayant conduits à la conclusion d'une eau agressive, à l'équilibre ou calcifiante (type d'eau) et les pourcentages des résultats ayant conduit aux différentes classes d'eau selon la réglementation. Ces informations permettent notamment de relativiser les conclusions en fonctions des marges d'incertitudes des résultats des mesures.

On peut imprimer, ou copier l'image de la fenêtre de calcul d'erreur en cliquant sur imprimer ou sur le bouton comportant l'image ci-dessous :

On peut aussi exporter les données et résultats figurant sur la feuille en cliquant sur le bouton comportant l'image ci-dessous :

Les résultats se présentent alors comme suit (exemple d'exportation sous MS Excel) :

		Paramètres saisis		
Température	16,2	±	0,2	°C
CIFEC, 12 bis rue du Cdt Pilot	, 92200 Neuilly sur Seine, Fr	rance -Tel: +33 (0)1 4640 4949 - Fax: -	+33 (0)1 4640087 - Email: int	fo@cifec.fr - Web <u>www.cifec.fr</u>
Notice 4021d		du 14/01/2020		P. 59 /136

pН	7	±	0,2	
TAC	16,596	±	0,1	°f
CO2 Libre		±		mg/l
ТА		±		°f
Calcium	97,2	±	2	mg/l
		Résultats		
		Caractéristiques de l'eau		
Lambda	0,77	±	0,05	mM/L
CO2 Total	4,111	±	0,4	mM/L
Saturatio	0,32	±	0,17	
		Equilibres		
		Calcium Constant		
pH equi.	7,49	±	0,01	
Delta CO2T	-0,543	±	0,4	mM/L
		Marbre		
pH equi.	7,35	±	0,08	
Delta CO2T	0,37	±	0,25	mM/L
Delta CaCO3	36,957	±	24,8	mg/L
		Diagnostic Etape 0		
		Type d'eau		
	Agressive (%)	Equilibre (%)	Calcifiante (%)	
	100	0	0	
		Réglementation		
Agressive (%)	Légèrement Agressive (%)	Equilibre (%)	Légèrement Incrustante (%)	Incrustante (%)
72.7	26.9	0.5	0	0

En cas de doute sur le choix du bouton à utiliser un message apparaît sous le pointeur de la souris précisant si la copie portera sur l'image ou sur les données. Cette fonction d'information peut être désactivée dans le menu « Visualiser » « Commentaires Visibles ».

Nota : Le calcul d'erreur porte aussi sur les doses de traitement de mise à l'équilibre calcocarbonique et de traitement de mise à pH ou TAC imposé. Pour plus d'information se reporter au chapitre « Traitements ».

4-8-4) Indices et constantes

Il peut être intéressant de connaître la valeur des constantes de dissociation ainsi que des indices de corrosivité ou encore d'autres résultats qui n'apparaissent pas sur la feuille d'étape.

L'activation de la fonction « Indices et Constantes »fait apparaître la feuille annexe suivante :

On dispose comme pour les autres fenêtres annexes des fonctions :

- \Rightarrow « Imprimer » qui permet d'imprimer l'image de la fenêtre via l'imprimante par défaut,
- \Rightarrow « Copier » qui permet de copier l'image de la fenêtre, via le presse-papier de Windows,
- \Rightarrow « Fermer » qui permet de quitter cette fenêtre.

Neuf blocs de résultats portent sur les informations suivantes :

4-8-4-1) Indices calcocarboniques :

- \Rightarrow Le SatuRatio qui est le rapport [Ca²⁺][CO₃²⁻] / K'_s et dont la valeur doit être supérieure à l'unité pour que l'eau soit calcifiante,
- ⇒ L'indice de Langelier (pH pH_s) dans lequel pH_s est le pH d'équilibre à calcium constant ; il doit être plus grand que zéro pour que l'eau soit calcifiante ; lorsque point figuratif de l'eau est situé à gauche du sommet de la courbe d'équilibre calcocarbonique, le pHs de Langelier qui est le pH d'équilibre à calcium constant n'existe pas ; dans ce cas, la case reste vide et un pop up rappelant cette propriété de l'eau, apparaît lorsque le pointeur de la souris se déplace sur cette case,
- ⇒ L'indice de Ryznar (2 pH_s pH) qui est encore appelé indice de stabilité et qui peut donner une tendance quant à la agressivité ($I_R > 7$) ou à l'entartrage ($I_R < 7$); toutefois cet indice est qualitatif et non quantitatif et doit être pris comme tel.

Indices et données intermédiaires de l'Eau: 1 Etape: 0									
	CO2 divers		_						
0.000	CO2 équilibrant	0.181 mM/l							
	CO2 excédentaire	0 mM/I							
6,201	CO2 agressif	0.18 mM/l							
Pas d'eau à l'équilibre à Ca constant									
Indices de corrosivité									
	médiaires de l'E	médiaires de l'Eau: 1 Etape: 0 CO2 divers 0,000 6,201 CO2 divers CO2 divers CO2 divers CO2 excédentaire CO2 agressi d'eau à l'équilibre à Ca constant Constantes d'équilibre	CO2 divers 0.000 CO2 divers 0.000 CO2 divers 0.001 CO2 excidentaire 0.201 CO2 excidentaire 0.181 mM/I CO2 agressif 0.18 d'eau à l'équilibre à Ca constant Constantes d'équilibres						

4-8-4-2) Indices de corrosivité :

- ⇒ L'indice de Larson qui correspond au rapport (2 $[SO_4^{2-}] + [Cl^-]) / [HCO_3^-]$; les ions chlorure et sulfate ayant un effet accélérateur de la corrosion, l'indice de larson doit être aussi faible que possible ; une valeur inférieure à 0,5 est acceptable,
- ⇒ L'indice « Leroy » qui est le rapport TAC / TH ; les ions calcium et magnésium associés aux hydrogénocarbonates ont un effet inhibiteur de la corrosion ; le apport TAC / TH doit donc être aussi proche de l'unité que possible ; une valeur comprise entre 0,7 et 1.3 est acceptable.

4-8-4-3) Représentation graphique de la minéralisation (Stabler) :

Cette représentation graphique permet de visualiser rapidement la composition minérale de l'eau étudiée ; les éléments prédominants apparaissent spontanément et l'on peut, d'un seul coup d'œil, caractériser l'eau : bicarbonatée calcique, sulfatée magnésienne, chlorurée sodique,...

4-8-4-4) CO2 divers :

On trouve parfois dans la littérature, des expressions du CO_2 qui étaient utilisées par le passé telles que CO_2 agressif, excédentaire ou équilibrant.

LPLWin donne dans ce bloc les valeurs correspondantes :

- \Rightarrow CO₂ équilibrant : C'est la concentration de H₂CO₃* qui correspond à l'équilibre à calcium constant,
- \Rightarrow CO₂ excédentaire : C'est la différence entre la concentration de H₂CO₃* de l'eau et celle de H₂CO₃* à l'équilibre à calcium constant,
- \Rightarrow CO₂ agressif : C'est la concentration de H₂CO₃* qui réagit avec le carbonate de calcium pour le dissoudre (cas d'une eau agressive => CO₂ agressif positif) ou pour le précipiter (cas d'une eau calcifiante => CO₂ agressif négatif).

4-8-4-5) Constantes d'équilibre :

Il peut être utile de connaître les valeurs des pK des constantes d'équilibre qui varient en fonction de la température et qui sont aussi corrigées de l'effet de la force ionique.

LPLWin donne ici les valeurs brutes des pK des constantes et les valeurs corrigées de la force ionique :

- \Rightarrow pKe (constante de dissociation de l'eau) et pK'e = pKe ϵ
- \Rightarrow pK₁ (constante de première dissociation de l'acide carbonique) et pK'₁ = pK₁ ϵ
- \Rightarrow pK₂ (constante de deuxième dissociation de l'acide carbonique) et pK'₂ = pK₂ 2 ϵ
- \Rightarrow pK_s (produit de solubilité du carbonate de calcium) et pK'_s = pK_s 4 ϵ

4-8-4-6) Comparaison activités et concentrations :

Qu'elle soit réalisée à l'aide d'une électrode de verre ou par ajout d'un indicateur coloré, la mesure du pH donne toujours l'activité des ions hydrogène et non la concentration ; or, dans les calculs, on utilise la concentration $[H_3O^+]$ et non l'activité ; ainsi LPLWin corrige a valeur saisie de $\epsilon/2$ pour faire les calculs ; afin de connaître la différence entre l'activité et la concentration le bloc de résultats donne :

- \Rightarrow La concentration [H+] et son cologarithme pH
- \Rightarrow L'activité (H+) et le pH mesuré

La différence entre les crochets [] et les parenthèses () n'étant pas très visible, un message rappelant la définition du paramètre, apparaît sous le pointeur de la souris lorsqu'elle passe sur les fenêtres correspondantes, comme le montrent les figures ci-dessous.

4-8-4-7) Correction du TAC colorimétrique

Dans ce bloc de résultats figurent :

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.62/136

- ⇒ Le pH de virage sélectionné soit dans le menu « Options » « Calcul » soit par l'intermédiaire du bouton 'Mode de dosage du TAC',
- ⇒ La correction effectuée par LPLWin, qui peut être positive ou négative selon que le pH de virage utilisé est supérieur ou inférieur au pH réel de virage,
- \Rightarrow Le TAC saisi qui apparaît dans la feuille d'étape,
- \Rightarrow Le TAC corrigé qui entre dans les calculs et qui est pris en compte dans la balance ionique de la balance ionique.

4-8-4-8) Formes de l'ammoniaque :

Pour certaines utilisations telles que la pisciculture ou l'évaluation de l'état environnemental du milieu aquatique, il peut être nécessaire de connaître la concentration de l'ammonium non dissocié (NH3) ; de même lors d'un traitement de chloration (hypochlorite ou chlore gazeux), il est utile de connaître la concentration de la monochloramine formée. Le bloc de résultat donne les diverses formes de l'ammonium (total, ionisé et non ionisé) ainsi que la concentration de monochloramine éventuellement formée.

4-8-4-9) Conductivité calculée

Dans ce bloc de résultats apparaissent les valeurs de la conductivité ou de la résistivité calculée à 25 °C à partir des conductivités équivalentes de toutes les concentrations des ions saisis ou calculées ainsi que la conductivité/résistivité calculée à la température de l'eau.

Si la conductivité/résistivité mesurée a été saisie, l'écart entre les valeurs saisie et calculée est indiqué.

4-8-4-10) Informations Calcul

Ce bloc rappelle les diverses informations éventuellement signalées lors du calcul :

Si aucune information n'a été signalée au cours du calcul, la mention RAS apparaît.

4-8-5) Tracer

L'appel de cette fonction fait apparaître la fenêtre de choix des courbes que l'on souhaite tracer :

Courbes :	
Tracer	Choix de l'eau à comparer : Eau 1 Etape 0 Eau Sélectionnée :
400 Comparaison avec une autre Etape Les "X" indiquent les coubes qui vont être tracées. Le bouton "Option" permet de charger les couleurs des coubes. Itacet Options	E au 1 Etape 0 Caractéritiques : Traitement : Néant Réactil : Néant

L'utilisateur peut sélectionner les diverses courbes d'équilibres (calcocarbonique, CO₂ atmosphérique ou n Ks') et la droite de pente 2 issue du point S d'abscisse λ , correspondant à l'eau étudiée. Il peut modifier la pression partielle du CO₂ dans la phase gazeuse et la valeur du *SatuRatio* souhaitée. Par défaut la pression de 0,0003 bar est sélectionnée ainsi que le *SatuRatio* de 40 qui correspond à la limite de stabilité de l'eau (cette valeur est la limite de la précipitation homogène spontanée).

L'utilisateur peut modifier à sa convenance la couleur des courbes, de la droite de pente 2 et du point figuratif de l'eau. Pour cela il doit cliquer sur le bouton « Options » qui fait apparaître la fenêtre cidessous :

Couleurs du graphique	
Association courbe/couleur- Courbes/Points : Courbe of 4cuitane Courbe Y K's Equit CD2 gazeux Point T Droite de pente 2 Point M1 Point M1 Point M2 Légendes Fond	Couleurs : Noir Bleu Vert Cyan Rouge Magenta Brun Giris Clar Giris Clar Giris Char
Courbe d'équilibre	Bleu clair Associer Par géfaut Eermer

Il suffit ensuite de cliquer sur l'élément à modifier (courbe ou point) puis sur la couleur souhaitée. La modification réalisée, il suffit de cliquer sur « Associer » puis de sélectionner un autre élément en réitérant les opérations d'association. Après avoir effectué l'ensemble des modifications, cliquer sur « Confirmer » pour valider les choix et quitter cette fenêtre.

Enfin, si l'étape est une étape de traitement ou si l'on étudie deux eaux distinctes, il peut être utile de visualiser sur une même figure deux étapes de la même eau ou les deux eaux ou encore deux étapes des deux eaux. Pour cela il suffit de cliquer sur « Comparaison avec autre étape » et de sélectionner l'eau et l'étape choisie.

Ces choix étant faits il suffit de cliquer sur « Tracer » pour quitter cette fenêtre de choix et faire apparaître la fenêtre du graphique de Legrand & Poirier.

Sur le graphique apparaissent :

- La courbe (C) d'équilibre calcocarbonique (en bleu dans cet exemple)
- \blacktriangleright La courbe (Γ) d'équilibre avec le CO₂ atmosphérique (en vert dans cet exemple)
- La courbe (C') correspondant à 40 K'_s (en rouge dans cet exemple)
- \triangleright La droite de pente 2 issue du point S d'abscisse λ (en noir)
- Le point M figuratif de l'eau étudiée
- \blacktriangleright Le point M₁ correspondant à l'équilibre calcocarbonique à calcium constant,
- Le point M₂ correspondant à l'équilibre après contact avec CaCO₃
- ▶ Le point T correspondant à l'eau en équilibre avec l'air et avec CaCO₃

Outre le graphique, trois blocs de résultats ou de fonctions complètent cette feuille :

- > Un bloc de résultats (encadré rouge sur la figure), où on a la valeur du terme λ et les coordonnées des points M1 et M2,
- Un bloc de 8 boutons (encadré bleu sur la figure); un message rappelant la fonction de chacun des boutons apparaît en bas et à gauche de la fenêtre LPL :
 - ⇒ La fonction A qui permet d'enregistrer le graphique dans un fichier au format .wmf (Windows Meta File) qui se présente comme montré sur la figure suivante :

 \Rightarrow La fonction B qui permet de copier l'image du graphique au format bitmap

 \Rightarrow La fonction C qui permet de copier l'image du graphique au format vectoriel :

⇒ La fonction D (flèche verte ci-dessous) qui permet de calculer les caractéristiques de l'eau pointée. Pour l'activer il suffit de cliquer en un point quelconque du graphique :

Courbes de l'eau 1 étape 0 LPWIN XXXXXX	x
Eermer [CO2total] mM/I	Coube d'équilibre Coube 40.0° K's Equi C02 parage
Annuler 6-	Point T Droite pente 2
0.78 4-	M1 Equi: Ca Cst. M2 Equi: Marbre
Corr 2- Corr 2- State 0 Corr 0 <	Eau 1 Etape 0 6 [Ca ² +] mM/l
C02T = 3.23	Zoom Loupe
	Une Etape [Bimap]
1	

Puis préciser le point sélectionné ; les coordonnées du point cliqué s'affichent dans le bloc « Pointeur » (flèche rouge).

Un clic sur la fonction D fait apparaître la feuille de calcul de l'eau pointée (les éléments caractéristiques de cette eau sont bien entendu les mêmes que ceux de l'eau étudiée initialement) :

Nota : Cette eau ne peut pas être traitée, le nombre d'étapes étant limité à 1.

⇒ La fonction E qui permet d'illustrer par une variation de couleur, la valeur du pH sur l'ensemble du graphique (du rouge pour le pH le plus faible au bleu pour le pH le plus élevé); durant le calcul l'échelle des couleurs apparaît dans la barre située sous le graphique :

Nota : Il est nécessaire de s'assurer au préalable que l'ordinateur est configuré avec un nombre de couleurs d'écran qui n'excède pas 24 bytes (un message sous le pointeur de la souris rappelle cette obligation).

⇒ La fonction F qui permet d'illustrer par une variation de couleur, la valeur du *SatuRatio* sur l'ensemble du graphique (du vert pour le *SatuRatio* le plus faible au rouge pour le *SatuRatio* le plus élevé); durant le calcul l'échelle des couleurs apparaît dans la barre située sous le graphique :

Eermer Courbes d'une étape	Courbe d'équilibre	Loupe = Bouton Droit
[CO2total] mM/I	Courbe 40.0* K's	
6-	Equi CU2 gazeux	
Annuler	Droite pente 2	
Lambda	Point M	
0,78 4-	M1 Equi. Ca Cst.	
Point M1	M2 Equi. Marbre	
Ca2+= 2.43 2- 356 2-	Eau 1 Etape 0	×1 Loupe = x 3 × 10
Point M2 0 1 2 3 4 5	6 [Ca²+] mM/I	
CO2T = Echelle des Saturations (X * Ks) 10E-4 10E-3 10E-2 10E-1 10E0	10E1 10E2 10E3 10E4	Zoom
3,23		Loupe
	mm (Imprimer Sauver
🔚 🐼 💹 🕓 🖊 🖊	Une Etape	(Bimap)

Nota : Il est nécessaire de s'assurer au préalable que l'ordinateur est configuré avec un nombre de couleurs d'écran qui n'excède pas 24 bytes (un message sous le pointeur de la souris rappelle cette obligation).

⇒ La fonction G fait apparaître (ou disparaître) le quadrillage du graphique qui est utile pour préciser les coordonnées du pointeur notamment :

Courbes de l'eau 1 étape 0 LPWIN XXXXXXX		
Eemer Inprimer Annulaer Davids	Courbe d'équilibre Courbe 40.0° K's Equi CO2 gazeux Point I Droite perte 2 Point M MI Equi. Ca Cat. M2 Equi. Marbre Eau 1 Etape 0 6 [Ca2+]mM/I	Loupe = Bouton Droit x1 Loupe = x 3 x10 Pointeur Ca2+= 2.05 4.07
	Une Etape	Sauver ImprimerSauver Vers Presse-Papier (Bimap)

⇒ La fonction H n'est active que si l'on a plusieurs eaux ou étapes à l'écran et si l'on a sélectionné la comparaison avec une autre eau ou étape (dans ce cas, les fonctions E et F sont désactivées). Elle permet de revenir au graphique d'une seule eau et étape :

🙆 LPLWin version	5.00												
Fichier Analyse Visua	aliser Rapport Option	s ?											
📴 Eau: 1 Etape:	0 LPWIN XX	xxxxxx							_]		
Vale Température 15.2 Conductivité 600 pH 8 TH c 26, TA 16.5 CO, libre c 0,08 Calcium 4.86 Magnésium 0.34	eur Unité en me/ - PC - µS/cm 492 +f 5,2 +f 3,3 me/1 0,08 Courbes de l'eau	Résultat Σ Cations 6,13 Σ Anions 6,14 Balance 0,15 HCO1 4,85 HCO2 199,61 CO2 1,02 CO2 1,37 1 étape 0 LPWIN	s Unité me/l %6 mg/l mg/l mM/l	Equilibres pH ACaCO, TAC H_CO; CO; CO; CO; Total	Ca Cst. 7,49 16,55 15,75 201,17 0,32 3,56	Marbre 7,55 -13,84 15,17 12,6 184,24 0,33 3,23	Unité mg/l of mg/l mg/l mM/l	Equilibre pH A CO ₂ TAC H ₂ CO ² H <u>CO</u> ² CO ² ₂ CO ² ₂	guiltitre Atmosphere Unié 1 8,73 CO_ -2,83 mg/l AC 16,55 ef CO_ 0,87 mg/l CO_ 190,38 mg/l Q_1^* 5,18 mg/l Q_1^* 5,18 mg/l NM/I Beauten Dunié mM/l				
Potassium 0.08 Ammonium 1.8 Fer divalent 0.1 Manganèse 0.3 Chlorue 0.76 Suifate 1.30 Narrate 0.24 Nitrite 0.1 Fluorure 0.4	Lermer LCI Implimer ICI Annuler ICI Annuler ICI Doint M1 ICI Ca2+ = 2.43 OQ1 = 3.56 Point M2 ()	mparation des courb		Cou Cou Equ Poir Droi Poir M11 - 70 M21	rbe dequili rbe 40.0° k i. CO2 gaz it T te pente 2 it M Equi. Ca C Equi. Ca C Equi. Marb Eau 1 Eta Eau 2 Eta	ore Vis eux st. re pe 0 pe 0	×1	-)	×10 ?T = 3,37	* A.C. * 10 Unité Equilibre Atmosp pH 5,53 377 mg/l A.CO38,14			3
	Ca2+= 2.29 C02T = 3.23				Une Eta	pe		Zoom pe mprimer S /ers Presse-P. Bimap)	auver	ng/ ng/ ng/ mM/ mM/I ng/	Н ₄ СО, 0, H ₄ CO, 0, HCO, 0, CO, 0, CO, Total 0, <u>ACO,t</u> -0 Saturatio 0, Type Ac	71 mg/ 07 mg/ mg/ 01 mM/ ,88 mM/ 0 aressive	
	Sulfate	7 mg/	0.15							f	Calcul d	incertitudes	
	Nitrate Nitrite Fluorure	0 mg/ 0 mg/ 0 mg/ 0 mg/		Classe d'ea Fichier:	u selon la f	Réglementa ments and f	ation E Settings\P	au à l'équilibre ?ierre\Mes do	: (Cl. 1) cuments\Do	nnées Ana	Inglices e lytiques\EauDerri	Constantes	

Un bloc de fonctions (encadré vert sur la figure) qui concerne la possibilité de zoomer sur une zone du graphique en <u>cliquant à l'aide du bouton droit de la souris</u> sur un point du graphique :

Courbes de l'eau 1 étape 0 LPWIN XXXXXX Eerner Imprimer Jmprimer Courbes d'une étape Oradio 6 - Landba 4 - Doint M1 2 - Courbes d'une étape 2 - Doint M1 2 - Doint M1 2 - Doint M1 2 - Doint M2 0	Courbe d'équilibre Courbe 40.0° K's Equi CD2 gazeux Point T Droite pente 2 Point M M1 Equi Ca Cat. M2 Equi Matbre Eau 1 Etape 0	Loupe = Bouton Drot *1 Loupe = x 3 × 10 Pointeur Ca2+= C02T = 2.45 3.43
0 1 2 3 4 5 021+ 323 1 1 1 1 1 323 1 1 1 1 1 1	6 [La+) mM/l	Zoom Loupe InprimerSauver Vers Presse-Papier Bimap]

Le grossissement de la loupe peut être modifié en déplaçant le curseur situé sous la fenêtre de la loupe en cliquant sur ce curseur et en maintenant la pression sur le bouton gauche de la souris pendant son déplacement.

Les coordonnées dans le graphique du centre de la loupe sont précisées dans le bloc « Pointeur ».

L'image de la fenêtre « Loupe » peut être imprimée, sauvegardée dans un fichier 'bitmap' ou envoyée vers le presse papier :

Enfin, la fonction « Zoom » fait apparaître le graphique en plein écran. **Nota :** En mode plein écran le pointage n'est pas possible.

4-8-6) Copier l'image

Cette fonction envoie vers le presse-papier l'image de l'étape (un message sous le pointeur de la souris rappelle l'objet de cette fonction lorsque celui-ci passe sur le bouton :

and Analyse Housea Ropport Options :													
🖻 Eau: 1 Et	ape: 0	L	WIN v5.	27 s:XXXX	XXX							l	
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	°C		ΣCations	5,639	me/I	pН	7,46	7,41		pH	8,76	
Conductivité	c 574	µS/cm	471	ΣAnions	5,832	me/I	Delta pH	0,24	0,18		Delta pH	1,53	
pН	7,62		7,22	Balance	3,36	%	∆CaCO ₃		14,832	mg/l	Δ CO ₂	-21,517	mg/l
тн	c 26,000	٩f	5,200	H,CO	31,186	mg/I H2CO	TAC	17,500	18,983	٩f	TAC	17,500	٩f
TA		٩f		HCO;	213,135	mg/l	H,CO;	17,925	22,119	mg/I H2CO	H,CO,	0,866	mg/I H2O
TAC	17,5	٩f	3,500	CO3-	0,179	mg/l	HCO;	212,860	230,983	mg/l	HCO;	201,565	mg/l
CO ₂ libre	22,	mg/l	0,500	CO ₂ Total	4,000	mM/I	CO3-	0,311	0,298	mg/l	CO3-	5,778	mg/l
Calcium	97,2	mg/l	4,860	λ	0,680	mM/I	CO, Total	3,784	4,148	mM/I	CO ₂ Total	3,415	mM/I
Magnésium	4,131	mg/l	0,340	SatuRatio	0,58		∆CO ₂ t	-0,216	0,148	mM/I	∆CO₂t	-0,585	mM/l
Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,200	103,133	mg/l	Saturatio	18,52	
Potassium	3,315	mg/l	0,085	SatuCO2	36,02		SatuCO2	20,7	25,55		Туре	Calcifiante	
Ammonium	0,	mg/l		Nom:			2	T					TAC
Fer divalent	0,2	mg/l	0,007	· · · ·				Tacer		mprimer	Mode o	ie dosage du	IT.A.U.
Manganèse	0,	mg/l											
Chlorure	28,01	mg/l	0,789		<u>C</u> alculer		obe	<u>T</u> raiter		F <u>e</u> rmer	Cal	cul d'incertitu	des
Sulfate	62,496	mg/l	1,302										
Nitrate	14,942	mg/l	0,241	Classe d'ea	u selon la Ré	églementatio	n Eaulégè	rem, agress	. (Cl. 2)/Ca	C	India	es et Consta	intes
Nitrite	0	mg/l				-	1			_			
		mg/l	01.0	Cickies	_							_	
Oxygene diss.	8,00	mg/l	81,3	Fichier:	1								

L'image copiée est la suivante :

	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	°C		ΣCations	5,639	me/l	pH	7,46	7,41		pH	8,76	
Conductivité	c 574	µS/cm	471	ΣAnions	5,832	me/l	Delta pH	0,24	0,18		Delta pH	1,53	
pН	7,62		7,22	Balance	3,36	%	∆CaCO ₃		14,832	mg/l		-21,517	mg/l
тн	c 26,000	٩f	5,200	H ₂ CO [*]	31,186	mg/I H2CO	TAC	17,500	18,983	٩f	TAC	17,500	of
ТА		٩f		HCO;	213,135	mg/l	H,CO	17,925	22,119	mg/I H2CO	H,CO	0,866	mg/I H2CO
TAC	17,5	٩f	3,500	CO ₃ ²⁻	0,179	mg/l	HCO;	212,860	230,983	mg/l	HCO;	201,565	mg/l
CO ₂ libre	22,	mg/l	0,500	CO ₂ Total	4,000	mM/I	CO32-	0,311	0,298	mg/l	CO32-	5,778	mg/l
Calcium	97,2	mg/l	4,860	λ	0,680	mM/I	CO ₂ Total	3,784	4,148	mM/I	CO ₂ Total	3,415	mM/I
Magnésium	4,131	mg/l	0,340	SatuRatio	0,58		∆CO₂t	-0,216	0,148	mM/I	∆CO₂t	-0,585	mM/I
Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,200	103,133	mg/l	Saturatio	18,52	
Potassium	3,315	mg/l	0,085	SatuCO2	36,02		SatuCO2	20,7	25,55		Туре	Calcifiante	
Ammonium	0,	mg/l		Nom:				-	1 .	. [1
Fer divalent	0,2	mg/l	0,007	'				l [acer	. <u>1</u>	mprimer	<u>M</u> ode d	e dosage du	T.A.C.
Manganèse	0,	mg/l											
Chlorure	28,01	mg/l	0,789		<u>C</u> alculer			<u>T</u> raiter		F <u>e</u> rmer	Calo	cul d'incertitu	des
Sulfate	62,496	mg/l	1,302	l ———									
Nitrate	14,942	mg/l	0,241	Classe d'e	au selon la Br	ádlamentatio	n Elau légèr	rem anress	: (CL 21/Ca	C	Indic	es et Consta	ntes
Nitrite	0	mg/l				sgiementatio				-			
Fluorure	0	mg/l										_	
Oxygène diss.	8,00	mg/l	81,3	Fichier:									
Unités d'El	Huités d'Entrés Huités de Casta												
- Shites d'El		100 00 0	onio										

4-8-7) Copier le texte

Cette fonction permet d'exporter les données vers un autre logiciel (MS Excel par exemple) en copiant les données dans le presse-papier :

		Valeur	Unité	en me/l
Température		16,2	°C	
Conductivité	С	574	μS/cm	471
рН		7,62		7,22
тн	с	26	°f	5,2
ТА			°f	

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.70/136

TAC		17,5	°f	3,5
CO2 libre		22	mg/l	0,5
Calcium		97,2	mg/l	4,86
Magnésium		4,131	mg/l	0,34
Sodium		7,981	mg/l	0,347
Potassium		3,315	mg/l	0,085
Ammonium		0	mg/l	
Fer divalent		0,2	mg/l	0,007
Manganèse		0	mg/l	
Chlorure		28,01	mg/l	0,789
Sulfate		62,496	mg/l	1,302
Nitrate		14,942	mg/l	0,241
Nitrite		0	mg/l	
Fluorure		0	mg/l	
Oxygène diss.	•	8	mg/l	81,3
			<u>5</u>	
	Résultats	Unité		
Somme des cations	5,639	me/l		
Somme des anions	5,832	me/l		
Balance	3,36	%		
H2CO3*	31,186	mg/l H2CO3		
НСОЗ-	213,135	mg/l		
CO3	0,179	mg/l		
CO2 total	4	mM/I		
Lambda	0,68	mM/I		
SatuRatio	0,58			
Туре	Agressive			
SatuCO2	36,02			
Classe d'eau selon la				
Réglementation	•	Eau légèrem. agress. (Cl. 2)/Ca Cst	_
Equilibres	Ca Cst.	Marbre	Unité	
рН	7,46	7,41		
Delta pH	0,24	0,18		
Delta CaCO3		14,832	mg/l	
TAC	17,5	18,983	°f	
H2CO3*	17,925	22,119	mg/l H2CO3	
HCO3-	212,86	230,983	mg/l	
CO3	0,311	0,298	mg/l	
CO2 total	3,784	4,148	mM/l	
Delta CO2 total	-0,216	0,148	mM/l	
Calcium	97,2	103,133	mg/l	
SatuCO2	20,7	25,55		
Equilibre	Atmosphère	Unité		
рH	8,76			
Delta pH	1,53			
Delta CO2	-21,517	mg/l		

TAC	17,5	°f	
H2CO3*	0,866	mg/I H2CO3	
HCO3-	201,565	mg/l	
CO3	5,778	mg/l	
CO2 total	3,415	mM/l	
Delta CO2 total	-0,585	mM/l	
Saturatio	18,52		
Туре	Calcifiante		

Exemple d'exportation vers Excel

4-8-8) Traiter

Le détail des possibilités offertes par cette fonction fait l'objet du chapitre suivant (Traitements)
5) TRAITEMENTS

LPLWin permet, en plus du calcul des caractéristiques de l'eau analysée, de simuler un grand nombre de traitements avec un choix tout aussi important de réactifs.

Pour simuler un traitement il suffit de cliquer sur le bouton « Traiter ».

La fenêtre des traitements apparaît, sur laquelle s'affiche une première liste, la liste des traitements à appliquer :

🅼 LPLWin ve	rsion 5.1	3		
Fichier Analyse	Visualiser	Rappor	rt Op	ptions ?
🗊 Eau: 1 Et	ape: O	Exemp	ole V	ersion 5 LPWIN XXXXXXXX
	Valeur	Unité	en m	e/I Résultats Unité Equilibres Ca Cst. Marbre Unité Equilibre Atmosphère Unité
Température	16,2	°C		ΣCations 6,132 me/l [pH 7,49 7,35 [pH 8,73
Conductivité	610	µS/cm	500	🛪 Traiter
pH	- 20	05		
TA	C 26,	°T 06	5,2	
TAC	16.5	of	3.3	I raitement a appliquer:
CO libre	c 0 704	mel	0.7	
Calcium	4.86	me/l	4.8	Mise due mosé
Magnésium	0.34	me/l	0.3	Mise à un pH imposé
Sodium	0.347	me/l	0.3	Température imposée
Potassium	0,085	me/l	0,0	SatuBatin imposé
Ammonium	1,8	mg/l	0,1	Reminéralisation
Fer divalent	0,1	me/l	0,1	Mélange
Manganèse	0,3	me/l	0,3	Loncentration Satu ID2 imposé
Chlorure	0,789	me/l	0,7	Aération-Déferrisation-Ozonisation
Sulfate	1,302	me/l	1,3	Nitrification biologique 🛛
Nitrate	0,241	me/l	0,2	And Inc.
Nitrite	0,1	me/l	0,1	Appliquer <u>Annuler</u>
Fluorure	0,4	me/l	0,4	
Unités d'E	18,00 ntrée Un	ités de So	<i>81,</i> ortie	Lette eau contenant du Manganese mais peu de rer, le traitement pourrait être l'ozonisation ou l'oxydation catalytique (simulée aussi par l'ozonisation)

Les traitements simulés par LPLWin sont les suivants :

- Traitements de « **Mise à l'équilibre** » calcocarbonique ; LPLWin permet de déterminer la dose du réactif choisi, nécessaire pour atteindre l'équilibre,
- Traitements d'« **Ajout d'une dose imposée** » ; LPLWin permet de connaître les caractéristiques et la composition de l'eau après ajout d'une quantité connue de réactif,
- Les traitements de « Mise à un TAC imposé » ; ils permettent de connaître la dose du réactif choisi nécessaire pour atteindre le TAC désiré ainsi que les caractéristiques et la composition de l'eau obtenue,
- Les traitements de « **Mise à un pH imposé** » ; LPLWin permet de connaître la dose du réactif choisi nécessaire pour atteindre le pH désiré ainsi que les caractéristiques et la composition de l'eau obtenue,
- Les traitements de mise à une « **Température imposée** » ; LPLWin permet de connaître les caractéristiques et la composition de l'eau après modification de sa température,
- Les traitements de « **Décarbonatation ou adoucissement** » ; LPLWin permet de simuler une décarbonatation partielle ou maximale à l'aide d'une réactif (chaux ou soude) ou par électrolyse ou encore de simuler un adoucissement par échange d'ions (résines cationiques) ; le logiciel calcul la dose de réactif nécessaire et donne les caractéristiques et la composition de l'eau après traitement,
- Le traitement de mise à un « *SatuRatio* imposé » ; LPLWin permet de simuler un ajout de réactif permettant d'atteindre le *SatuRatio* (taux de saturation par rapport à l'équilibre calcocarbonique) souhaité ; ce traitement est utile lorsque l'on souhaite, par exemple, rendre l'eau légèrement calcifiante,
- Les traitements de « **Reminéralisation** » ; LPLWin permet de calculer les doses de réactifs nécessaires pour atteindre l'équilibre calcocarbonique et la concentration choisie de calcium après un éventuel ajout de CO₂ ; Il donne également les caractéristiques et la composition de l'eau après traitement,
- Le « **Mélange** » de deux eaux ; LPLWin permet de simuler le mélange de deux eaux dont on fixe les proportions ; Il donne alors les caractéristiques et la composition de l'eau ainsi obtenue,

- La « **Concentration** » maximale d'une eau qui peut être obtenue lors d'un contact prolongé avec l'air et évaporation partielle de l'eau (cas d'aéroréfrigérants humides notamment) ; au delà de 40 Ks le carbonate de calcium précipite spontanément, l'eau n'est donc plus stable. Au dessous de cette valeur l'eau est stable à court terme ; il peut être intéressant de connaître la limite de stabilité d'une eau en contact avec l'atmosphère pour déterminer notamment le taux de concentration maximale et ainsi pouvoir déterminer le débit de purge. Les hypothèses de calcul sont les suivantes : l'eau est en équilibre avec l'atmosphère (concentration en CO₂ libre correspondant à cet équilibre), l'eau atteint le *SatuRatio* de 40 ; LPLWin calcul le taux de concentration correspondant et fourni les caractéristiques et la composition de l'eau ainsi concentrée mais sans perte de CO₂ ; la fenêtre de droite d'équilibre avec l'atmosphère permet aussi de connaître les caractéristiques finales de l'eau,
- Le traitement d'échange de CO₂ avec l'air permettant d'obtenir un « Satu CO2 imposé » ; on peut, à l'aide d'un traitement d'ajout de CO₂ ou de contact prolongé avec l'air, chercher à obtenir un taux de saturation déterminé par rapport à l'air ; LPLWin calcul la quantité de CO₂ à introduire ou à éliminer pour obtenir le taux de saturation souhaité ; il donne aussi les caractéristiques et la composition de l'eau ainsi obtenue,
- Les traitements d'« **Aération Déferrisation** ozonation» ; LPLWin permet de simuler une aération avec ou sans échange de CO₂ avec l'air suivie de la précipitation éventuelle d'hydroxyde ferrique si l'eau, bien sûr, contient initialement du fer divalent ; il donne aussi les caractéristiques et la composition de l'eau ainsi obtenue,
- Le traitement de « **Nitrification biologique** » qui est une oxydation de l'ammonium et des nitrites en nitrates ; LPLWin permet de simuler une aération avec ou sans échange de CO₂ avec l'air suivie de la précipitation éventuelle d'hydroxyde ferrique si l'eau contient du fer divalent ; ce traitement permet aussi de simuler l'oxydation catalytique du manganèse ; il donne aussi les caractéristiques et la composition de l'eau ainsi obtenue ; ce traitement n'es visible que dans la mesure où l'eau à traiter contient de l'ammonium et/ou des nitrites,
- Le 'traitement' de « **Réduction chimique des nitrates** » qui sont transformés en ammonium ; il s'agit ici de la réduction des nitrates dans un circuit clos tel que circuit de chauffage ou de climatisation sous l'effet des réactions de corrosion ; LPLWin donne les caractéristiques de l'eau après cette réduction.

Le choix du type de traitement se fait en cliquant sur le traitement désiré dans la liste.

Nota : Dans le cas où l'eau contient du fer divalent et/ou du manganèse, un message de conseil apparaît dans la partie inférieure de la fenêtre, précédé du logo suivant :

5-1) Mise à l'équilibre

Le choix de ce traitement, effectué par un clic sur la première liste (liste des traitements), fait apparaître une seconde liste, celle des réactifs utilisables. On entend par réactifs utilisables pour la mise à l'équilibre calcocarbonique, ceux qui, lorsqu'ils sont introduits dans l'eau, ont une influence importante sur le pH. Ainsi les réactifs tels que le permanganate de potassium, les hypochlorites de calcium ou de sodium, le chlorure ou le sulfate de calcium sont exclus de la liste.

D'autre part, selon que l'eau est agressive ou calcifiante la liste fera apparaître des réactifs à caractère basique ou acide. En effet, l'utilisation, par exemple, d'un réactif basique pour amener une eau calcifiante à l'équilibre conduit nécessairement à une dose négative, ce qui n'est pas réaliste.

5-1-1) Cas des eaux agressives

La liste des réactifs utilisables dans le cas du traitement d'une eau agressive est la suivante :

- 1) Na_2CO_3
- 2) Ca(OH)₂
- 3) NaOH
- 4) CaCO₃, n MgO
- 5) CaCO₃, n MgCO₃
- 6) NaHCO₃

On a ajouté aussi le CO_2 qui, bien que de caractère acide, peut être éliminé par barbotage d'air, pour autant que l'eau présente une concentration de CO_2 supérieure à la concentration d'équilibre avec l'air.

	Valeur	Unité	en me/l	1	Résultats Unité Equilibres Ca Ost Marbre Unité Equilibre Atmosphère Unité
Température	16,2	°C		ΣCa	
Conductivité	600	µS/cm	492	ΣAr	Traiter
рH	7			Bak	
гн	c 26,	٩f	5,2	H,CC	Tabana Same
ТА	1	٩f	-	HCC	Tratement a appliquer: <u>H</u> eactir a utiliser:
TAC	16,5	٩f	3,319	COS	Mise a l'equilibre NaZUUS
CO, libre	c 0,794	me/l	0,794	CO,	Ajour o une dose imposee Lajon j2 Mise à un TáC imposé
Calcium	4,86	me/l	4,86	λ	Mise à un pH imposé CO2
Magnésium	0,34	me/l	0,34	Sat	Température imposée CaCO3, nMgD
Sodium	0,347	me/l	0,347	Тур	Décarbonatation ou adoucissement CaCO3, nMgCO3
Potassium	0.085	me/l	0.085	Satu	Saturhatio impose INAHLU3
Ammonium	0	ma/l	-	Nom	neninteraisauun Mélanne
Fer divalent	0.1	me/l	0.1	Noin	Concentration
Vlancanèse	0.3	me/l	0.3		Satu CD2 imposé
Chlorure	0,789	me/l	0,789		Aération-Déferrisation-Uzonisation Pureté (%): 100
Sulfate	1,302	me/l	1,302		I miningation pipiogidae
Nitrate	0,241	me/l	0,241		Appliquer Annuler
Nitrite	0,1	me/l	0,1	Cla	
Fluorure	0,4	me/l	0,4		
Oxymène diss	8.00	ma/l	81.2	Fic	

Nota : Si l'eau présente des concentrations de CO_2 total de calcium trop faible pour qu'une élévation du pH par un ajout de soude, ne permette pas la mise à l'équilibre (cas signalé par un message d'alerte lors du calcul initial), la soude est alors retirée de la liste. De même, si le point figuratif de l'eau est situé à gauche du nez de la courbe (cas signalé par le message d'alerte « Pas d'eau à l'équilibre ayant même calcium » lors du calcul), le CO_2 est alors retiré de la liste des réactifs utilisables.

5-1-2) Cas des eaux calcifiantes

La liste des réactifs utilisables pour la mise à l'équilibre d'une calcifiante est la suivante :

- 1) HCl
- 2) Cl₂
- 3) FeCl₃
- 4) Al₂(SO₄)₃, n H₂O
- 5) Le chlorure de poly-aluminium (PAC)
- 6) Le sulfate de poly-aluminium (PAS)

7) CO₂
 8) H₂SO₄

🕞 Eau: 1 Et	ape: O	LP	WIN XX	xxxxxx		_				_ = [×
	Valeur	Unité	en me/l		Résultats I	ā	Traiter				×
Température	16,2	°⊂		ΣCations	5,646 r						
Conductivité	c 569	µS/cm	467	ΣAnions	5,658 r		Traitement à appliquer :		Dépatif à utiliser :		
pН	8			Balance	0,2 4		Trakement a appliquer.		Teacor a donser .		
TH	c 26,	٩f	5,2	H,CO,	4,858 r		Aiout d'une dose imposée		FU CI2		
TA		٩f		HCO;	199,225 r		Mise à un TAC imposé		FeCI3		
TAC	16,5	٩f	3,3	CO3-	1,005 r		Mise à un pH imposé		Al2(SO4)3, nH2O		
CO ₂ libre	c 3,448	mg/l	0,078	CO ₂ Total	3,361 r		Température imposée		PolyALCI (PAC)		
Calcium	97,2	mg/l	4,86	λ	0,78		SatuBatio imposé		PolyALSU4 (PAS)		
Magnésium	4,131	mg/l	0,34	SatuRatio	3,24		Reminéralisation		H2S04		
Sodium	7,981	mg/l	0,347	Туре	Calcifiante		Mélange				
Potassium	3,315	mg/l	0,085	SatuCO2	5,61		Concentration				
Ammonium	0	mg/l		Nom:		1	Aération-Déferrisation-Dzonisation		1		Pureté (%) :
Fer divalent	0,1	mg/l	0,004	,			Nitrification biologique	-			Fullete (%) . [30
Manganèse	0,3	mg/l	0,011			II.		Ξ.			
Chlorure	28,01	mg/l	0,789		Calculer		Appliquer <u>A</u> nnuler				
Sulfate	62,496	mg/l	1,302					_			
Nitrate	14,942	mg/l	0,241	Classe d'ea	u selon la Rég						
Nitrite	0,1	mg/l	0,002								
Fluorure	0,4	mg/l	0,024			1					
Oxygène diss.	8,00	mg/l	81,3	Fichier:	1						
Unités d'E	intrée Uni	tés de Si	ortie								

Il suffit de cliquer sur le réactif choisi, de modifier éventuellement la pureté du réactif et/ou la basicité des PAS et PAC, puis de valider le choix et lancer le calcul en cliquant sur la touche « Appliquer ». Si la pureté ou la basicité a été modifiée LPLWin proposera de sauvegarder cette valeur pour une

LPLWin donne alors les caractéristiques et la composition de l'eau à l'équilibre calcocarbonique. Il donne aussi la dose de réactif nécessaire.

On peut noter que le tableau des équilibres avec $CaCO_3$ a disparu, l'eau étant maintenant à l'équilibre calcocarbonique. Il est remplacé par un message rappelant que les caractéristiques à l'équilibre sont celles de l'eau étudiée (a partir de la version 5.25).

🔅 LPLWin ver	sion 5.25	ō																	
Fichier Analyse	Visualiser	Rappo	rt Options	; ?															
📴 Eau: 1 Eta	ape: 0	LI	PWIN v5.	25 s:XXXX	xxx		📴 Eau: 1 Eta	ipe: 1	U	WIN v5	.25 s:XXXXX	xxx							
Température Conductivité pH TH TA TAC CO, libre Calcium Nagnésium Sodium	Valeur 16,2 c 582 8 c 26,000 17,5 c 3,655 97,2 4,131 7,981	Unité	en me/l 4.78 5,200 3,500 0,083 4,860 0,340 0,347	Σ Cations Σ Anions Balance H ₂ C0 [*] HC0 [*] ₃ C0 [*] ₂ C0 [*] ₂	Résultats 5,746 5,858 1,92 5,150 211,137 1,066 3,562 0,680 3,42 Calcifiant	Unité me/l % mg/l mg/l mg/l mM/l	Température Conductivité pH TH TA TAC CO ₁ libre Calcium Magnésium Sodium	Valeur 16,2 588 7,49 26,000 16,552 11,347 24,300 0,952 7,981	Unité ℃ µS/cm °f °f °f °f °f °D mg/l	en me/l 482 5,200 3,310 0,258 4,860 0,340 0,347	Σ Cations Σ Anions Balance H ₂ C0 [*] HC0 [*] ₂ C0	Résultats 5,746 5,858 1,92 15,989 201,239 0,312 3,562 0,775 1,0 Equilibre	Unité me/l me/l % mg/l mg/l mg/l mM/l	Les l'égi déjà	caractérist uilibre sont es de l'eau a à l'équilibr	iques de l'eau à les mêmes que étudiée qui est re.	Equilibre pH Delta pH A CO ₂ TAC H ₂ CO [*] ₃ CO ₂ ⁻ ₃ CO ₂ Total ACO ₂ t Saturatio	Atmosphen 8,73 1,24 -10,733 16,552 0,866 190,481 5,163 3,223 -0,339 16,51	e Unité of mg/l mg/l mg/l mM/l mM/l
Potassium Ammonium Fer divalent Manganèse Chlorure Sulfate Nitrite Fluorure	3,315 1,8 0,1 0,3 28,01 62,496 14,942 0,1 0,4	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,085 0,097 0,004 0,011 0,789 1,302 0,241 0,002 0,024	SatuCO2 Nom:	5,95 Galculer au selon la F	églement	Potassium Ammonium Fer divalent Manganèse Chlorure Sulfate Nitrate Nitrate Fluorure	3,315 1,800 0,100 0,300 34,742 62,496 14,942 0,100 0,400	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,085 0,099 0,004 0,011 0,979 1,302 0,241 0,002 0,024	SatuCO2 Trait. Réactif Dose Pureté Classe d'ea	18,47 Mise à l'équ HCI 23,073 mg/ 30,0 % u selon la F	uilibre / Réglementa	ation Eau	Tracer Iraiter r à l'équilibre	Imprimer Fermer (CL 1)/Ca Cst	Type Calco Indice	Calcifiante Il d'incertitude s et Constant	es
Oxygène diss. Unités d'Er	8,00	mg/l	81,3	Fichier:			Oxygène diss. Unités d'Er	8,00 htrée Uni	mg/l	<i>81,3</i>	Fichier:								

Dans le cas du traitement avec le chlore, on notera que LPLWin tient compte des réactions avec les divers éléments qui peuvent réagir avec ce réactif (voir partie sur ajout d'une dose imposée) et notamment dans le cas de l'exemple présenté, la concentration en fer divalent a été ramenée à zéro et celle des ions nitrite a été modifiée.

Liller Andryse	visualisei	карри	ort Options	, r												
🛛 Eau: 1 Et				🗊 💭 Eau: 1 Et	ape: 1	LF	WIN XX	xxxxxx								
	Valeur	Unité	en me/l		Valeur	Linité	en me/l		Régultate	Linité				Equilibre	Atmonphà	al lota
Fempérature	16,2	°C		Température	16.2	9C	ennen	ΣCations	5.932	me/				nH	8.71	
Conductivité	600	µS/cm	492	Conductivité	592	uS/cm	486	Σ Anions	6.041	me/l				Delta nH	1.7	
н	8			oH	7.52	porem	100	Balance	1.83	9/0				A CO	-9.511	ma/l
гн	c 26,	٩f	5,2	TH	26.	of	5.2	H.CO.	14.267	ma/l				TAC	15.728	of
ΓA		٩f		ТА		٩f		HCO;	191,232	mg/l				H,CO	0,866	mg/l
TAC	16,5	٩f	3,309	TAC	15,728	٩f	3,146	CO3-	0,317	mg/l				HCOT	182,104	mg/l
O ₂ libre	c 0,078	me/l	0,078	CO ₂ libre	10,125	mg/l	0,23	CO ₂ Total	3,37	mM/I				CO3-	4,733	mg/l
alcium	4,86	me/l	4,86	Calcium	97,2	mg/l	4,86	λ	0,857					CO ₂ Total	3,078	mM/I
/lagnésium	0,34	me/l	0,34	Magnésium	4,131	mg/l	0,34	SatuRatio	1,0					∆CO₂t	-0,292	mM/I
Sodium	0,347	me/l	0,347	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	14,95	
Potassium	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	16,48					Туре	Calcifiante	
Ammonium	0	mg/l		Ammonium		mg/l		Trait.	Mise a logu	ilibre	ð	-	1 1			
er divalent	0,1	me/l	0,1	Fer divalent		 /		Réactif	CI2			l racer	Imprimer			
Manganèse	0,3	me/l	0,3	Manganèse	8,25	mg/l	0,3	- (
hlorure	0,789	me/I	0,789	Chlorure	30,275	mg/l	0,853	Dose	2,265 mg/l			<u>T</u> raiter	Fermer	Calc	ul d'incertitud	les
Sulfate	1,302	me/l	1,302	Sulfate	62,496	mg/l	1,302	Purete	100,0 %	· · · · ·						
Nitrate	0,241	me/l	0,241	Nitrate	15,37	mg/l	0,248	Classe d'ea	au selon la B	éalement	ation Eau	u à l'équilibre	(Cl. 1)/Ca Cst	Indice	es et Constar	ites
	0,1	me/I	0,1	Nitrite	4,282	mg/l	0,093	5.5000 0 00		- g.c.nonki						
	0,4	me/i	0,4	Fluorure	6,8	mg/l	0,4									
oxygene diss.	0,00	ing/i	01,2	Oxygène diss.	8,00	mg/l	81,2	Fichier:								

Il convient de noter que l'application de ce traitement dans la première étape de traitement ne désactive pas le bouton « Calcul d'incertitudes ». S'agissant d'un calcul de dose de réactif, il peut être intéressant de calculer la marge d'incertitude de cette dose, liée aux incertitudes des mesures des divers paramètres saisis dans l'étape initiale (Etape 0).

L'activation de ce bouton fait apparaître la feuille de calcul d'incertitude décrite au chapitre feuille de saisie. Mais une fenêtre supplémentaire figure dans celle des résultats et concerne la dose de réactif. Dans cette fenêtre les caractéristiques du traitement sont rappelées ainsi que le réactif et la dose calculée.

Il convient de noter que dans le cas du traitement de mise à l'équilibre, les résultats ne portent, bien évidemment, que sur les caractéristiques de l'eau traitée, et les valeurs relatives à l'écart à l'équilibre n'ont pas de sens et ne figurent pas sur le tableau « Résultats ».

PLWin versi	on 5.13														
er Analyse V	/isualiser	Rapport	Options	?											
-		-		(alama										6	
🎔 Eau: 1 Et	ape: 0	Exem	ple Versi	💯 Eau: 1 E	ape: 1	LF	PWIN XX	XXXXXX						L	
	Valeur	Unité	en me/l		Valeur	Unité	en me/l		Résultats	Unité			Equilibre	Atmosph	ère Unité
Température	16,2	°C		Température	16,2	°C		ΣCations	6,132	me/I			pН	8,71	
Conductivité	600	µS/cm	492	Conductivité	600	µS/cm	492	ΣAnions	6,141	me/l			Delta pH	1,19	
pН	8			pН	7,52			Balance	0,15	%			ΔCO ₂	-9,472	mg/l
TH	c 26,	٩f	5,2	TH	26,	٩f	5,2	H _i CO [*]	14,213	mg/l			TAC	15,723	٩f
TA		٩f		TA		٩f		HCO;	191,117	mg/l			H,CO,	0,866	mg/l
TAC	16,5	٩f	3,309	TAC	15,723	٩f	3,145	CO3-	0,318	mg/l			HCO3	181,34	mg/l
CO, libre	c 0,078	me/l	0,078	CO, libre	10,087	mg/l	0,229	CO, Total	3,368	mM/I			CO3-	4,702	mg/l
Calcium	4,86	me/l	4,86	Calcium	97,2	mg/l	4,86	λ	0,858				CO ₂ Total	3,065	mM/I
Magnésium	0,34	me/l	0,34	Magnésium	4,131	mg/l	0,34	SatuRatio	1,0				∆CO₂t	-0,302	mM/I
Sodium	0,347	me/l	0,347	Sodium	7,981	mg/l	0,347	Туре	Equilibre	_			Saturatio	14,75	
Potassium	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	16,42				Туре	Calcifiante	
Ammonium	1,8	mg/l	0.097	Ammonium	1.8	mal	0.099	T 3	Mine 2 82-		i see l	1			-
Fer divalent	0,1	me/	Incertitud	es sur les résul	tats de l'Ea	iu:1-1	itape: 1								×
Manganèse	0,3	me/l	Paramèt	res saisis			Résu	iltats			Traitement	Diagn	ostic Etapo	e 0	
Chlorure	0,789	me/l									Mise à l'équilibre		Tune d'e	au	
Sulfate	1,302	me/I	Températu	are 16,2 ±),2 °(2	Cara	ctéristiques d	e l'eau		nino a roquinoro		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Nitrate	0,241	me/	nH	0.0 +	1.2		Lamb	da 0.050 +		- HAR	D (Agress	ve (%)		
Nitrite	0,1	me/	p	10,0 - 1	3,2		Lanto	- 10,000		1111176	Heactir: HLI	Equilibr	e (%)		
Fluorure	0,4	me/	TAC	16,547 ±	D,1 °f		CO2	Total 3,368 ±		mM/L	Dose (mg/l)	Calcifia	nte (%)		
Oxygène diss.	8,00	mg/l	CO2 Libre	+		a/l	Satur	atio 10 +		-	6,012 ±				
							Conta	- 11,0	·)				Réalement.	ation	
Unités d'E	ntrée U	nités de	TA	±	۴										
			Calcium	97.2 +	2 0	a/I						Agress	ve (%)		
				lour - l	-	-						Légère	ment		
												Agress	ve %		
			C-1	au dan	Incrim							Equilibr	e (%)		
			La	Culoi	Tubuu	01						l áriðra	ment		
							-					Incrust	ante (%)		
				1.1			1					1	(80)		
			Ee	rmer	PH	E.						Incrust	ante (%)	I	
							,								
			_		_	_	_		_	_		_	_	_	

Après le calcul les incertitudes, le tableau de résultats donne les incertitudes sur les caractéristiques de l'eau traitée : Lambda, CO₂ Total et Saturatio qui est dans ce cas égal à 1 puisque l'eau est à l'équilibre. La fenêtre « Diagnostic » donne les pourcentages de résultats obtenus pour chaque type ou classe, pour l'Etape 0 ; l'Etape 1 étant la mise à l'équilibre, ces statistiques seraient sans objet.

🖧 LPLWin version 5.13											
Fichier Analyse Visualiser	Rapport Options	?									
💭 Eau: 1 Etape: 0	Exemple Versi	😨 💭 Eau: 1 Eta									
Valeur	Unité en me/l		Valeur Unité	en me/l		Résultats	Unité	1	Equilib	re Atmosph	ère Unité
Température 16,2	°C	Température	16,2 °C		Σ Cations	6,132	me/I]	pH	8,71	
Conductivité 600	µS/cm 492	Conductivité	600 µS/cm	492	Σ Anions	6,141	me/I		Delta	pH 1,19	
pH 8		pH	7,52		Balance	0,15	%		A CO	-9,472	mg/l
тн с 26,	of 5,2	TH	26, °f	5,2	H,CO,	14,213	mg/l	-	TAC	15,723	of
TA	of	TA	٩f		HCO;	191,117	mg/l	-	H,CO	0,866	mg/l
TAC 16,5	°f 3,309	TAC	15,723 of	3,145	CO3-	0,318	mg/l	-	HCO;	181,34	mg/l
CO, libre c 0,078	me/l 0,078	CO ₂ libre	10,087 mg/l	0,229	CO, Total	3,368	mM/I	-	CO3-	4,702	mg/l
Calcum 4,86	me/I 4,86	Calcium	97,2 mg/	4,86	λ	0,858			CO ₂ T	otal 3,065	mM/I
Magnesium 0,34	me/I 0,34	Magnésium	4,131 mg/	0,34	SatuRatio	1,0			ΔCO ₂ t	-0,302	mM/I
Sodum 0,347	me/i 0,34/	Sodium	7,981 mg/	0,347	Туре	Equilibre			Satura	itio 14,75	
Potassium 0,085	me/i 0,085	Potassium	3,315 mg/	0,085	SatuCO2	16,42		1	Type	Calcifiante	
For dealant 0.1	mg/i 0,097	TAmmonium	1.8 mg/	0.099	Trait	Mire à l'émi	ilhra				
Managaria 0,1	Incertitudes	sur les resultat	s de l'Eau : 1 - Et	ape: 1					D:		
Chlorure 0.789	Parametre:	s saisis		Resulta	(S			Traitement	Diagnostic Etap	be U	
Sulfate 1 302	me Tana (ashua	Real Land	*0	Course		P		Mise à l'équilibre	Type d'	eau	0.5
Nitrate 0.241	me	116,2 = 10,2	C	Lalacte	nsuques de	reau			Agressive (%)	00,0	
Nitrite 0.1	mr pH	8,0 ± 0,2		Lambda	0,858 ±	0,06 m	M/L	Réactif : HCI	5 77 (00)	100.0	ites
Fluorure 0,4	TAC	10 647 + 0.1	*6	CO2 T-4	+ 930.01	0.05		Dose (mg/l)	Equilibre (%)	100,0	
Oxygène diss. 8,00	mg construction	110,047 - 10,1		002 10	ar jo, 300 -	0,00 m	IM/L	6.012 ± 1.544	Calcifiante (%)	100,0	
	CU2 Libre		mg/i	Saturatio	• j1,0 ≝	0,00			Réglemen	tation	
Unités d'Entrée U	Inités o TA	±	1						Agressive (%)	00,0	
	Calcium	97,2 ± 2	mg/l						Légèrement	00,0	_
									MULIESSIN/8 [/6]	Law a	
	Calcu	ler	Imprimer						Equilibre (%)	100,0	
									Légèrement Incrustante (%)	1,6	
	<u>F</u> erm	er 🎽	, 2						Incrustante (%)	98,4	
							1111				

Nota : La durée des calculs peut être sensiblement plus longue que dans le cas de l'Etape 0.

5-2) Ajout d'une dose imposée

Dans cette partie, LPLWin permet de simuler des ajouts à dose connue :

- De réactifs à caractère acide ou basique utilisés le plus souvent pour la mise à l'équilibre calcocarbonique ou pour modifier le pH ou le TAC d'une eau (NaOH, Na₂CO₃, Ca(OH)₂, CO₂, H₂SO₄ et HCl),
- 2) De réactifs utilisés pour la clarification (FeCl3, Al₂(SO₄)₃, 18 H₂O liquide ou poudre, le chlorure de poly-aluminium- PAC et le sulfate de poly-aluminium- PAS),
- 3) De réactifs basiques utilisés pour reminéraliser l'eau (CaCO₃ n MgO, CaCO₃ n MgCO₃); leur emploi est parfois associé à un ajout de CO₂,
- 4) De réactifs parfois utilisés pour reminéraliser l'eau (CaSO₄, CaCl₂ et NaHCO₃); utilise généralement l'un des deux premiers réactifs associé à NaHCO₃ ou parfois à Na₂CO₃
- 5) De réactifs oxydants (Cl₂, NaClO ou eau de javel, Ca(ClO)₂ connu aussi sous le nom de chlorure de chaux ou d'hypochlorite de calcium et KMnO₄),
- 6) De réactifs réducteurs (Na₂SO₃) utilisés notamment pour éliminer l'oxygène dissous dans l'eau des circuits de chauffage ou de climatisation.

Après avoir choisi le traitement d'ajout d'une dose imposée, la liste complète des réactifs utilisables apparaît.

Ficher Analyse Visualiser Rapport Options ? ID Eau: 1 Erape: 0 Exemple Visualiser St Traiter ID Eau: 1 5.2 C St Traiter St St St Traiter Doe C <th></th>	
W Fau: 1 Etape: 0 Exemple Version 5 Traiter: Tempénture 15.2 °C S Traiter: Conductivé Conductivé	
Valeur Unité Ennetitue Béschi à utiliser: Doce : Conductivéé 600 µS/cm 492 Enter Iralement à appliquer : Béschi à utiliser: Doce : PH 8 F5,2 FC Mise à l'équilitre Acido 4 majorité NaOH TA 26,9 47,2 HCC Mise à l'équilitre Acido 4 majorité NaOH TA 16,5 47 3,309 GOL Cold fumé dois imposée CalOH12 CalOH12 CalOH12 CalOH12 Cold Historia Mise à transmosée Na/L Mise à transmosée Mise à transmosée CalOH12 CalOH12 Cold Historia CalOH12 Cold Historia CalOH12 Cold Historia Cold Historia<	
Température 15.2 °C ECs Conductivé 600 µS/cm 42 EAn Inalement à appliquer : Béactif à ultiter : Dote : pH 8 Eant Mise à l'quilitée Actide Basiquer : Béactif à ultiter : Dote : TH C.25, ºf 4, S.2 LSC Mise à un TAC imposé No.4 No.4 <td></td>	
Potassium 0,085 me/ 0,085 satu Jaki 002 mpose	
Aminoaumi 0 mg/l Mon Ner dvalert 0,1 mg/l 0,1 Non Mangades 0,3 mg/l 0,3 Appliquer Annuer	
Sufface 1,922 me/l 1,922 Narate 0,241 me/l 0,241 Narrise 0,1 me/l 0,1	
Buorure 0.4 me/l 0.4 Oxygène des. 8,00 mg/l 81,2 Unités d'Entrée Unités de Sorie 1	

Pour des raisons de clarté et de facilité de choix, les réactifs ont été classés par types tels que définis cidessus. A côté de cette liste, une fenêtre de saisie de la dose apparaît aussi.

5-2-1) Réactifs acido-basiques, de clarification et de reminéralisation

Il suffit de choisir le réactif dans la liste, de renseigner la dose à mettre en œuvre et de vérifier ou modifier l'unité correspondante (mM/l ou mg/l) puis de cliquer sur le bouton « appliquer ».

🖵 Eau: 1 Etap			on 5 🜈	Traitor	
Température 2 Conductivité 6 PH 8 TH 6 Calcium 4 Calcium 4 Calcium 4 Calcium 4 Calcium 6 Calcium 7 Calcium	Valeur Unit 16,2 ℃ ℃ 500 µS/s № 25, of of 16,5 of № № 26, of № № № 0,078 me/ № № № № 0,078 me/ №	té en me/l té en me/l 5,2 3,309 5,2 3,309 1 0,078 1 0,347 1 0,085 1 0,035 1 0,036 1 0,036 1 0,036 1 0,036 1 0,0241 1 0,021 1 0,1 1 0,1 1 0,24 1 8,2,2	Clas	Traiter Iratement à appliquer : Mise à l'acuitize Acuid Oune dose imposée Acido-Basiques Mise à un Flair imposée NaOH Décationatation ou adoucissement Satur Bato imposé Décationatation ou adoucissement Ca(OH)2 Satur Bato imposé HCI Concentration Facilization Reminéralization Partification Satur Bato imposé Facilization Concentration Satur Bato imposé Appliquer Annuler	1

LPLWin calcul les nouvelles caractéristiques de l'eau ainsi que sa composition :

🕻 LPLW	/in versio	on	5.13																
Fichier A	Analyse Vi	isu	aliser Ra	apport	Option	is ?													
ffe r					ala W	ff Environt Etc	anor 1	1.0		~~~~~									
	au. I Lu	aμ	e. 0	Lyeni	Jie vi		ape: 1	LF											
		ľ	Valeur	Unité	en m		Valeur	Unité	en me/l		Résulta	ts Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	Unité
Temp	pérature	T	16,2	°C		Température	16,2	°C		ΣCatio	ns 6,132	me/l	pH	7,51	7,53		pН	8,72	
Cond	ductivité	(600	µS/cm	492	Conductivité	598	µS/cm	491	ΣAnion	s 6,141	me/l	Delta pH	-0,15	-0,13		Delta pH	1,06	
pH		- 4	8			pH	7,66			Baland	æ 0,15	%	∆CaCO,		-5,227	mg/l		-6,826	mg/l
TH		c	26,	٩f	5,2	TH	26,	٩f	5,2	H _{CO} ;	10,484	mg/l	TAC	16,037	15,519	٩f	TAC	16,037	٩f
TA				٩f		TA		٩f		HCO;	194,654	mg/l	H,CO	14,766	13,575	mg/l	H,CO	0,866	mg/l
TAC			16,5	٩f	3,309	TAC	16,037	٩f	3,207	CO ₃ ²⁻	0,447	mg/l	HCO;	194,941	188,55	mg/l	HCO;	184,78	mg/l
CO ₂	libre	c	0,078	me/I	0,07	CO ₂ libre	7,441	mg/l	0,169	CO ₂ To	tal 3,368	mM/I	CO3-	0,319	0,324	mg/l	CO3-	4,884	mg/l
Calci	ium		4,86	me/l	4,86	Calcium	97,2	mg/l	4,86	λ	0,826		CO ₂ Tota	3,439	3,315	mM/I	CO ₂ Total	3,125	mM/I
Magr	nésium		0,34	me/l	0,34	Magnésium	4,131	mg/l	0,34	SatuR	atio 1,4		∆CO ₂ t	0,072	-0,052	mM/I	∆CO ₂ t	-0,243	mM/I
Sodiu	um	1	0,347	me/I	0,347	Sodium	7,981	mg/l	0,347	Туре	Calcifia	nte	Calcium	97,2	95,109	mg/l	Saturatio	15,3	
Potas	ssium	1	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCC	12,11		SatuCO2	17,05	15,68		Туре	Calcifiante	
Amm	nonium	_	1,8	mg/l	0,097	Ammonium	1,8	mg/l	0,099	Trait.	Dose im	oosée	a l	-		.			
Fer d	divalent	1	0,1	me/I	0,1	Fer divalent	2,8	mg/l	0,1	Réactif	H2SO4			I racer	Imbi	rimer			
Mang	ganèse	1	0,3	me/I	0,3	Manganèse	8,25	mg/l	0,3										
Chlo	rure	1	0,789	me/l	0,789	Chlorure	28,01	mg/l	0,789	Dose	5, mg/i		obc	<u>T</u> raiter	F <u>e</u> r	mer	Calci	ul d'incertitude	is 🛛
Sulfa	ate	-	1,302	me/l	1,302	Sulfate	67,394	mg/l	1,404	Tuete	100,0 %								
Nitra	ite	1	0,241	me/l	0,241	Nitrate	14,942	mg/l	0,241	Classe	d'eau selon l	a Réglemen	tation Eau	à l'équilibre (Cl. 1)/Ca C	st	Indice	s et Constant	es
Nitrit	te	1	0,1	me/l	0,1	Nitrite	4,6	mg/l	0,1				· · · · ·						
Fluor	rure	H٩	0,4	me/l	0,4	Fluorure	6,8	mg/l	0,4	-									
Oxyg	gène diss.		8,00	mg/l	81,2	Oxygène diss.	8,00	mg/l	81,2	Fichier	:								
	Unités d'E	ntr	ée Unit	tés de S	ortie	Unités d'Er	ntrée Uni	tés de Si	ortie										
										_		_		_	_	_			

Le tableau « Trait. » (sur fond bleu) rappelle le type de traitement appliqué, le réactif choisi et la dose introduite qui est exprimée en tenant compte de la pureté du réactif.

Il convient de noter que le bouton « Calcul d'incertitudes » est désactivé étant donné que la dose de réactif est imposée et non calculée.

Dans le cas où le réactif choisi est CaCO₃, nMgO ou CaCO₃, nMgCO₃ (réactifs de reminéralisation), une fenêtre de saisi supplémentaire permet de préciser la valeur de « CaCO3 (%) ». La valeur 71,2 est donnée par défaut pour la dolomie calcinée et 54,2 pour la dolomie. Ces valeurs correspondent à « n » =1.

Traiter	S Traiter	
Instement à appliquer: Béactif à viliser: Dore: Mine à la faquibre Add/Source pour Reminé. Dore: Mine à un pli imporé Poysi Ol (PAC) Poysi Ol (PAC) Decebonation ou adousisement Sauf-Adio imporé Poysi Ol (PAC) Sauf-Bidi imporé Cac03 : MégO3 Cac03 : MégO3 Concernition Sauf-Dial imporé Cac03 : MégO3 Sauf-Bidi imporé Cac03 : MégO3 Cac03 : MégO3 Concernition Sauf-Dial imporé Cac03 : MégO3 Sauf-Bidi imporé Cac03 : MégO3 Cac03 : MégO3 Cac02 : MelCO3 Cac03 : MégO3 Cac03 : MégO3 Mate diversition Reminé. Cac03 : MégO3 Sauf-Bidi imporé Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Cac04 : Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Cac03 : MégO3 Mine au Di Popoié Cac04 : C	Iraitement à appliquer : Béactif à utiliser : Dose : Algoli d'une dose mposée Algi 2003, nH 20 Unité Mise à un TAC imposé Algi 2003, nH 20 Unité Température imposée Polyal CI (PAC) Polyal CI (PAC) Décationnation ou adoucisement Satur 100 imposé Mide 04 Set pour Reminédiation nu adoucisement Satur 100 imposé Set pour Reminédiation 04 Satur 100 imposé Acido Basiques pour Reminé Cacido 3 nHd CO3 Satur 100 imposé Acido Basiques pour Reminé Cacido 3 nHd CO3 Satur 100 imposé Acido Basiques pour Reminé Cacido 3 nHd CO3 Satur 100 imposé Acido Basiques pour Reminé Cacido 2 nHeininé Acido Basiques pour Reminé Cacido 2 nHeininé Cacido 2 nHeininé Addition Polerination Offernisation Of	

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.**79**/136

Dans la feuille de résultats la valeur de « n » qui a été calculée par LPLWin s'affiche dans la grille bleue.

Pour le sulfate d'aluminium, $Al_2(SO_4)_3$, 18 H₂O la version 5.17 a rendu inopérante la saisie du « n » qui néanmoins figure encore. Seule la saisie du pourcentage de Al_2O_3 permet de préciser la pureté. Ainsi la simulation de l'ajout de sulfate d'alumine en solution devient beaucoup plus simple car il suffit de connaître la concentration en Al_2O_3 du produit qui est toujours donnée par le fournisseur. Pour le sulfate d'alumine en poudre, la teneur en Al_2O_3 est aussi donnée par le fournisseur (une pureté de 100% correspond à 102/666 soit 15,3% d'Al₂O₃).

Pour le chlorure ou le sulfate de poly-aluminium le taux de neutralisation de ces sels est donné par le fournisseur par la basicité. Ainsi il suffit de connaître la teneur en Al_2O_3 et la basicité pour définir le produit utilisé et son effet sur l'équilibre calcocarbonique de l'eau. Il suffit de saisir ces données dans la feuille de traitement ou de les prédéfinir avec le menu « Options » « Pureté des réactifs ».

	Valeur	Unité	en me/l		Résul		
Température	12,8	•⊂		Σ Cations	2,943	Tellenert Steellener	David
Conductivité	c 340	µS/cm	257	ΣAnions	2,923	Travenieni a appiquei . Deacui a unisei .	Duse.
pН	8,62			Balance	-0,69	Mise a l'équibre	<u> </u>
тн	25	٩f	5,	HCO,	0,223	Mise à un TAC imposé	Unité
TA	c 0,043	٩f	0,009	HCO;	35,21	Mise à un pH imposé Al2ISO413 nH2O	C mM/I
TAC	3	٩f	0,6	co;-	0,632	Température imposée PolyALCI (PAC)	(* mg/l
CO ₂ libre	c 0,158	mg/l	0,004	CO ₂ Total	0,591	Decarbonatation ou adoucissement PolyAI S04 (PAS)	
Calcium	44	mg/l	2,2	λ	0,8	Berninéralisation Acido-Basiques p	oour Remi
Magnésium	4,3	mg/l	0,354	SatuRatic	1,03	Mélange CaCO3, nMgD	Basic (%) =
Sodium	7,3	mg/l	0,317	Туре	Equili	Concentration Calculation Calculation	45
Potassium	2,8	mg/l	0,072	SatuCO2	0,24	Satu CO2 imposé	· ·
Ammonium	0	mg/l		Nom:	Eau	Réduc électrochim de ND2 et SD4	AI203(%): 30
Fer divalent	0	mg/l			Lau	Freduc, electrochine de Nob el 504	
Manganèse	0	mg/l				Appliquer Annuler	
Chlorure	45	mg/l	1,268		Calcul		\mathbf{X}
Sulfate	27	mg/l	0,563		-		
Nitrate	28	mg/l	0,452	Character.			
Nitrite	0	mg/l		Classe d e	au seioi		
Fluorure	0,7	mg/l	0,041				
Oxygàna diss.	10,20	mg/l	96,3	Fichier:	E:VM		

5-2-2) Réactifs oxydants

Les quatre réactifs suivants peuvent être sélectionnés :

- 1) Le chlore (Cl₂),
- 2) L'hypochlorite de sodium (NaClO) ou 'eau de javel',
- 3) L'hypochlorite de calcium (Ca(ClO)₂) appelé aussi HTH ou encore chlorure de chaux,
- 4) Le permanganate de potassium (KMnO₄).

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.80/136

Si la procédure de simulation dans LPLWin de l'addition de ces réactifs est la même que pour les réactifs indiqués précédemment, il convient de préciser ci-dessous les autres réactions mises en œuvre et l'ordre dans lequel elles sont appliquées.

5-2-2-1) Le chlore

Le chlore est utilisé généralement sous forme gazeuse et est dissout dans un faible débit d'eau, préalablement à son injection dans l'eau à traiter. Dans la solution concentrée, le chlore se dissout pour partie sous forme moléculaire et se combine partiellement avec l'eau pour former de l'acide hypochloreux et de l'acide chlorhydrique :

$Cl_2 + H_2O \rightarrow ClO^- + Cl^- + 2 H^+$

Ce réactif présente donc un caractère acide relativement important selon son dosage. Outre l'acidification qui résulte de son introduction dans l'eau, le chlore réagit aussi avec plusieurs ions et molécules présents dans l'eau et en particulier le fer divalent, les ions nitrite et ammonium ainsi qu'avec des composés organiques.

LPLWin tient compte de ces réactions, pour autant que les concentrations de fer divalent, de nitrite et d'ammonium ne soient pas nulles, et cela dans l'ordre suivant :

a- $Cl_2 + 2 Fe^{2+} + 6 H_2O \rightarrow 2 Fe(OH)_3 + 2 Cl^- + 6 H^+$

b- nitrite $Cl_2 + NO_2^- + H_2O \rightarrow NO_3^- + 2 Cl^- + 2 H^+$

c- ammonium $3Cl_2 + 2 NH_4^+ \rightarrow N_2 + 6 Cl^- + 8 H^+$

Cette dernière réaction est présentée globalement mais se décompose en 2 étapes successives :

1) Transformation de l'ammonium en monochloramine

+ NH_4^+ → NH_2Cl + Cl^- + 2 H^+

2) Destruction de la monochoramine et formation d'azote

+ 2 NH₂Cl \rightarrow N₂ + 4 H⁺ + 4 Cl⁻

Ainsi LPLWin permet de simuler les réactions du Break Point.

Exemple :

Soit une eau contenant notamment :

- 1) Du fer divalent (0,1 me/l soit 0,05 mMole/l ou encore 2,6 mg/l)
- 2) Des ions nitrite (0,1 me/l soit 4,6 mg/l)
- 3) Des ions ammonium (0,1 me/l soit 1,8 mg/l)
- 4) Sa composition calculée par LPLWin est donnée ci-dessous.

													_
🖓 Eau: 1 Et	ape: 0	Exemp	ole Versi	on 5 LP	WIN XXXX	(XXX							
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	°C		Σ Cations	6,132	me/l	pH	7,49	7,55		pH	8,73	
Conductivité	600	µS/cm	492	ΣAnions	6,141	me/l	Delta pH	-0,51	-0,45		Delta pH	0,73	
рH	8			Balance	0,15	%	ACaCO ₃		-13,843	mg/l	Δ CO ₂	-2,831	mg/l
тн	c 26,	٩f	5,2	H,CO;	4,855	mg/l	TAC	16,547	15,168	٩f	TAC	16,547	٩f
ТА		٩f		HCO;	199,615	mg/l	H,CO;	15,747	12,6	mg/l	H,CO	0,866	mg/l
TAC	16,5	٩f	3,309	CO3-	1,016	mg/l	HCO;	201,169	184,242	mg/l	HCO;	190,382	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ Total	3,368	mM/I	CO3-	0,318	0,332	mg/l	CO3-	5,182	mg/l
Calcium	4,86	me/l	4,86	λ	0,775		CO ₂ Total	3,557	3,229	mM/I	CO ₂ Total	3,221	mM/I
Magnésium	0,34	me/l	0,34	SatuRat	io 3,19		∆CO₂t	0,19	-0,138	mM/I	∆CO₂t	-0,146	mM/l
Sodium	0,347	me/l	0,347	Туре	Calcifiante	-	Calcium	97,2	91,663	mg/l	Saturatio	16,26	
Potassium	0,085	me/l	0,085	SatuCO2	5,61		SatuCO2	18,19	14,55		Туре	Calcifiante	
Ammonium	0,1	me/l	0,097	Nom: F	xemple Vera	ion 5	ð	-	1	. 1			
Fer divalent	0,1	me/l	0,1					l lacer	Impri	mer	Mode de	dosage du 1	Г.A.C.
Manganèse	0,3	me/l	0,3										
Chlorure	0,789	me/l	0,789		Calculer			Traiter	F <u>e</u> rr	ner	Calcu	ul d'incertitud	es
Sulfate	1,302	me/l	1,302										
Nitrate	0,241	me/l	0,241	Classe d	eau selon la Br	éalement	ation Eau in	crustante f	Cl. 51/Ca C:	at	Indice	is et Constan	tes
Nitrite	0,1	me/l	0,1	Cidsse u	ouu solorna m	synometric			,				
Fluorure	0,4	me/l	0,4										
Oxygène diss.	8,00	mg/l	81,2	Fichier:									

L'ajout de 0,025 mMole/l de chlore (soit 1,775 mg/l) conduit à l'oxydation du fer divalent sans modifier les concentrations de nitrite et d'ammonium :

🙆 LPLWin ver	rsion 5.1	3															
Fichier Analyse	Visualiser	Rappo	rt Optio	ins ?													
🗊 Eau: 1 Eta	ape: 0	Exemp	ole Ver	🗰 Fau: 1 Ft	ane: 1	L		xxxxxx									
	Valeur	Unité	en me/l		Valeur	Linité	len mell]	Récultate	Unité	Fauilibeen	CalCat	Mashan	11034	Emilihas	Látmes shàs	411036
Température	16.2	PC	C. I.I.	Température	16.2	or	en me/i	T Cations	6.032	med	Equilibres	7.51	7.52	Unite	CQUIIDIE	8 71	Unite
Conductivité	600	uS/cm	492	Conductivité	592	uS/cm	486	Σ Apions	6.041	mel	Delta oH	-0.03	-0.03		Delta oH	1 16	
pН	8			DH	7.55	portan	100	Balance	0.16	%	ACaCO-	0,05	-1.307	ma/l	A CO-	-8.845	ma/l
тн	c 26,	٩f	5,2	TH	26.	of	5.2	H.CO.	13.329	ma/l	TAC	15,797	15.671	of	TAC	15,797	of
TA		٩f		TA		of	-/-	HCOT	191,962	mg/l	H,CO	14,406	14,106	mg/l	H,CO	0,866	mg/l
TAC	16,5	٩f	3,309	TAC	15,797	of	3,159	CO3-	0,342	mg/l	HCO:	192,019	190,422	mg/l	HCO:	182,161	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ libre	9,459	mg/l	0,215	CO ₂ Total	3,368	mM/I	CO3-	0,316	0,317	mg/l	CO3-	4,738	mg/l
Calcium	4,86	me/l	4,86	Calcium	97,2	mg/l	4,86	λ	0,85		CO ₂ Total	3,385	3,355	mM/I	CO ₂ Total	3,079	mM/I
Magnésium	0,34	me/l	0,34	Magnésium	4,131	mg/l	0,34	SatuRatio	1,08		∆CO ₂ t	0,018	-0,013	mM/I	∆CO ₂ t	-0,288	mM/I
Sodium	0,347	me/l	0,347	Sodium	7,981	mg/l	0,347	Туре	Equilibre		Calcium	97,2	96,677	mg/l	Saturatio	14,95	
Potassium	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	15,39		SatuCO2	16,64	16,29		Туре	Calcifiante	
Ammonium	0,1	me/l	0,097	Ammonium	1,8	mg/l	0,099	Trait.	Dose impos	ée	a	-	1	. 1			
Fer divalent	0,1	me/l	0,1	Fer divalent		mg/l		Réactif	CI2			I racer	Impri	imer			
Manganèse	0,3	me/l	0,3	Manganèse	8,25	mg/l	0,3										1
Chlorure	0,789	me/l	0,789	Chlorure	29,785	mg/l	0,839	Dose	1,775 mg/l 100.0 %		ebc	Traiter	Ferr	ner	Calco	ul d'incertitude	8
Suitate	1,302	me/l	1,302	Sulfate	62,496	mg/l	1,302	i urete	100,0 %								
Nitrate	0,241	me/i	0,241	Nitrate	14,942	mg/l	0,241	Classe d'ea	u selon la R	églement	tation Eau à	l'équilibre (Cl. 1)/Ca Cs	st	Indice	s et Constant	es
Fluorum	0,1	me/i	0,1	Nitrite	4,6	mg/l	0,1			-	1						
Ovorana disa	8.00	me/l	81.2	Fluorure	6,8	mg/l	0,4	- Contraction									
oxygene diss.	0,00	jing/i	042	Oxygene diss.	8,00	mg/l	81,2	Fichier:	1								
Unités d'El	ntrée Uni	ités de So	ortie	Unités d'E	ntrée Uni	ités de S	ortie										

Puis un nouvel ajout de 7,1 mg/l de chlore (soit 0,1 mMole/l) conduit à l'oxydation de la totalité des ions nitrite :

🔅 LPLWin ve	rsion 5.1	3																		
Fichier Analyse	Visualiser	Rappo	ort Optic	ons ?																
1	0			(~					_	
U Eau: 1 Et	ape: 0	Exem	ple ver:	💭 Eau: 1 Eta			💭 Eau: 🛛 Eta	ipe: 2	LP	WIN XX	XXXXXX									
	Valeur	Unité	en me/l		Valaur			-								1				
Température	16.2	°C	C. I.	Tomoómtum	16.2	5		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	Unité
Conductivité	600	uS/cm	492	Conductivité	502		Température	16,2	°C		ΣCations	6,032	me/l	pH	7,54	7,48		pH	8,68	
рH	8			oH	7 55	p.	Conductivité	592	µS/cm	486	ΣAnions	6,041	me/l	Delta pH	0,3	0,24		Delta pH	1,45	
тн	c 26,	٩f	5,2	тн	26	of	pH	7,24			Balance	0,16	%	ACaCO,		15,332	mg/l	A CO ₂	-1/,481	mg/l
ТА		٩f		ТА	201	of	TA	26,	۹ ۲	5,2	HCO,	25,498	mg/i	TAC	14,797	16,334	ΨT	TAC	14,797	Ψ T
TAC	16,5	٩f	3,309	TAC	15,797	of	TAC	14 707	чт об	2.050	HUU,	180,177	mg/i	H,00,	12,633	10,1/3	mg/i	HLCO,	0,866	mg/i
CO ₂ libre	c 0,078	me/l	0,078	CO, libre	9,459	m	CO libro	19,005	-1	2,959	CO ₃	0,157	mg/i	nco:	0.216	190,550	mg/i	HCO3	1/1,159	mg/i
Calcium	4,86	me/l	4,86	Calcium	97.2	m	Coloium	10,095	mg/i	1 96	CO ₂ rotar	3,300 0.05	mimi	CO Total	2 157	2 521	mg/i	CO Total	7,102	mg/i
Magnésium	0,34	me/l	0,34	Magnésium	4,131	m	Magnéeium	4 131	mg/l	0.34	A.	0,55			-0 211	0.153	mM/I	ACO t	-0.479	mMA
Sodium	0,347	me/	0,347	Sodium	7,981	m	Sodium	7 981	mg/l	0,347	Type	0,5 Agressive		Calcium	07.2	103 333	mal	Saturatio	13.2	100-9/1
Potassium	0,085	me/l	0,085	Potassium	3,315	m	Potassium	3 315	mal	0.085	SatuCO2	29.45		SatuCO2	14 59	18.68	iiig/i	Type	Calcifiante	
Ammonium	0,1	me/I	0,097	Ammonium	1,8	m	Ammonium	1.8	ma/l	0.1	Trait	Doop impos	áo		11,00	1	1		Concinainte	
Fer divalent	0,1	me/l	0,1	Fer divalent		m	Fer divalent	2/0	ma/l	5/1	Béactif	CI2	ee	A	Tracer	Impri	imer			
Manganèse	0,3	me/	0,3	Manganèse	8,25	m	Manganèse	8,25	mg/l	0.3							_			
Chlorure	0,789	me/l	0,789	Chlorure	29,785	m	Chlorure	36,885	mg/l	1,039	Dose	7,1 mg/l		<u>è</u>	Traiter	Ferr	ner			25
Sulfate	1,302	me/l	1,302	Sulfate	62,496	m	Sulfate	62,496	mg/l	1,302	Pureté	100,0 %		[0bc]	_					
Nitrate	0,241	me/l	0,241	Nitrate	14,942	m	Nitrate	21,142	mg/l	0,341	G		<	ri E su lá	aòram agr	ooo (CL 2)/	0.0	Indice	e et Constani	
Nitrite	0,1	me/I	0,1	Nitrite	4,6	m	Nitrite		mg/l		Liasse diea	iu selon la H	egiementa		yerenii. ayr	ess. (Cl. 2)/	Lac	mgicc	s or constan	
Fluorure	0,4	me/i	0,4	Fluorure	6,8	m	Fluorure	6,8	mg/l	0,4										
Oxygene alss.	8,00	img/i	81,2	Oxygène diss.	8,00	m	Oxygène diss.	8,00	mg/l	81,2	Fichier:									
Unités d'E	intrée Ur	ités de S	ortie	Unités d'Er	ntrée Unit	és	Unités d'Er	ntrée Unit	tés de So	ortie										

Un ajout supplémentaire de 7,1 mg/l de chlore (soit 0,1 mMole/l) entraîne la transformation de la totalité de l'ammonium en monochloramine :

🙆 LPLWin ve	rsion 5.13																		_ 7
Fichier Analyse	Visualiser	Rapport Options	s ?																
🗊 Eau: 1 Et	ape: 0 E	💭 Eau: 1 Et	ape: 1	🗊 Eau: 1 Et	ape: 2	💭 Eau: 1 Eta	ape: 3	LI	PWIN XXX	xxxxx									
	Valeur		Valeur		Valeur		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	Température	16,2	Température	16,2	Température	16,2	°C		Σ Cations	5,932	me/l	pH	7,57	7,44		pН	8,66	
Conductivité	600	Conductivité	592	Conductivité	592	Conductivité	584	µS/cm	479	ΣAnions	5,941	me/l	Delta pH	0,53	0,4		Delta pH	1,62	
pH	8	pН	7,55	pH	7,24	pH	7,04			Balance	0,16	%	ACaCO,		31,66	mg/l	ΔCO ₂	-26,208	mg/l
TH	c 26,	TH	26,	TH	26,	TH	26,	٩f	5,2	H,CO;	37,796	mg/l	TAC	13,797	16,963	٩f	TAC	13,797	٩f
TA		TA		TA		ТА		٩f		HCO;	168,144	mg/l	H ₂ CO [*]	11,015	18,381	mg/l	H _{CO}	0,866	mg/l
TAC	16,5	TAC	15,797	TAC	14,797	TAC	13,797	٩f	2,759	CO3-	0,092	mg/l	HCO;	167,673	206,357	mg/l	HCO;	160,689	mg/l
CO ₂ libre	c 0,078 i	CO ₂ libre	9,459	CO ₂ libre	18,095	CO ₂ libre	26,823	mg/l	0,61	CO ₂ Total	3,368	mM/I	CO3-	0,315	0,288	mg/l	CO3-	3,683	mg/l
Calcium	4,86 1	Calcium	97,2	Calcium	97,2	Calcium	97,2	mg/l	4,86	λ	1,05		CO ₂ Total	2,932	3,684	mM/I	CO ₂ Total	2,71	mM/I
Magnésium	0,34 1	Magnésium	4,131	Magnésium	4,131	Magnésium	4,131	mg/l	0,34	SatuRatio	0,29		∆CO₂t	-0,436	0,317	mM/I	∆CO₂t	-0,658	mM/I
Sodium	0,347 1	Sodium	7,981	Sodium	7,981	Sodium	7,981	mg/l	0,347	Туре	Agressive	2	Calcium	97,2	109,864	mg/l	Saturatio	11,67	
Potassium	0,085 1	Potassium	3,315	Potassium	3,315	Potassium	3,315	mg/l	0,085	SatuCO2	43,65		SatuCO2	12,72	21,23		Туре	Calcifiante	
Ammonium	0,1 1	Ammonium	1,8	Ammonium	1,8	Ammonium		mg/l		Trait.	Dose impos	ée	e l	-	1	.			
Fer divalent	0,1 1	Fer divalent		Fer divalent		Fer divalent		mg/l		Réactif	CI2			I racer	Impr	mer			
Manganèse	0,3 1	Manganèse	8,25	Manganèse	8,25	Manganèse	8,25	mg/l	0,3										1
Chlorure	0,789 1	Chlorure	29,785	Chlorure	36,885	Chlorure	40,435	mg/l	1,139	Dose	7,1 mg/l		1	<u>T</u> raiter	Ferr	ner	Calcu	l d'incertitude	98
Sulfate	1,302 1	Sulfate	62,496	Sulfate	62,496	Sulfate	62,496	mg/l	1,302	Furete	100,0 %					J			
Nitrate	0,241 (Nitrate	14,942	Nitrate	21,142	Nitrate	21,142	mg/l	0,341	Classe d'e	au selon la B	éalement	ation Eau a	aressive (C	1. 31/Ca Cst		Indice	s et Constanl	tes
Nitrite	0,1 1	Nitrite	4,6	Nitrite		Nitrite		mg/l		010330 0 0		egioment	ddon						
Fluorure	0,4 1	Fluorure	6,8	Fluorure	6,8	Fluorure	6,8	mg/l	0,4										
Oxygène diss.	8,00 1	Oxygène diss.	8,00	Oxygène diss.	8,00	Oxygène diss.	8,00	mg/l	81,2	Fichier:									
Unités d'E	ntrée Unité	Unités d'E	ntrée Unité	Unités d'E	ntrée Unité	Unités d'Er	ntrée Un	ités de S	ortie										

La concentration de la monochloramine est visible dans la feuille « Indices et Constantes » qui apparaît en cliquant sur le bouton « Indices et Constantes » :

chier Analyse	Visualiser	Rapport Option	s ?								
🕨 Eau: 1 Et	ape: 0	E 🗊 Eau: 1 Et	ape: 1	💭 Eau: 1 Et	ape: 2	💭 Eau: 1 Et	ape: 3	U	WIN XXXXXXXX		
Leau: 1 Et Température Conductivité pH TH TA TA CO, libre Calcium Potasium Sodum Potasium Sodum Potasium Annonium Fer divalent Mangarèse Chiferure Crygène das. Lunkés dE	Appe: 0 Valeur 16,2 600 8 c 26, 16,5 c 0,078 4,86 0,34 0,347 0,085 0,1 0,3 0,31 1,302 0,241 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1 0,1	Constant of the second se	ape: 1 Valeur 16,2 592 7,55 26, 15,797 9,459 97,2 4,131 7,981 3,315 1,8 8,278 22,795 23,781 4,6 62,496 62,496 62,496 4,6 6,8 8,00	V low: 111 Température Conductivé pH TH TA CO, Ibre Caldum Négasian Sodan Présaien Sufare Sufare Sufare Oxygène des Nitrate Duorue Oxygène des	Valeur 16,2 16,2 592 7,24 26, 14,797 18,095 97,2 4,131 4,131 1,8 8,25 36,885 36,885 82,496 21,142 6,8 8,00 Unit	D Faue 1EE Température Geldutvie pri TA TAC Col, libre Calcium Magnétika Ammosian Pétaesium Ammosian Chiorure Sulfate Nintrie Nintrie Nintrie	ape: 3 Valeur 15,2 584 13,797 26,823 4,131 3,315 6,246 6,25 40,435 6,486 8,00 ntrée UI	LI Unté °C upS/cm of of of mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	WIN XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	us 1 Rape: 3 CD2 devises 0.178 CD2 devises 0.313 CD2 devises 14.322 pk5 17.337 pk4 19.247 pk3 19.337 Pk4 10.12 <	Bitrer Atmospheric Unté 20 Bitrer Atmospheric Unté 30 -56,200 mg// 30 -15,970 rft 30 -156,689 mg/l 30 -160,689 mg/l 31,797 rft 160,689 mg/l 32 -160,689 mg/l -160,689 mg/l 34 -0.58 mf/l -160,698 mg/l 34 -0.58 mg/l -160,698 mg/l 35 -0.58 -160,698 -
									Conductivité calculée Conductivité à 25,0°C 607 µS/cm	Conductivité à 16,2°C 498 µS/cn	n
									Ecart Conductivité calculée / mesurée (en %)	3,93	

Puis un nouvel ajout de 3,55 mg/l de chlore (0,05 mMole//l) permet l'oxydation de la monochloramine en azote gazeux. Les concentrations de la monochloramine et de l'ammonium sont alors annulées :

Fichier Analyse Visualiser Rapport Options ?					
💬 Eau: 1 Etape: 0 E 🞲 Eau: 1 Etape: .	4 LPWIN XX	cxxxxx			🛛
Valeur Température Valeur (a.2	unt en meil 2 °C is/g/m 479 3 °f 9 °f 9	Résultats Une Indices et don Z.Cations 5,932 med. Balanco 9,16 med. HCQC 59,167 med. HCQC 156,005 med. COL 0,66 med. HCQC 156,005 med. Saturato (n=1) 15 med. Saturato (n=1) 15 med. Table 15 med. Saturato (n=1) 15 med. Trad. Oxe mpode 100,0.5 Classe d'eau selon la Régierre 100,0.5 Fichile: - - Former de l'a - Annoniam - Conductivéé Conductivéé	Légende CO2 divers 0153 mMA 01 0.723 CO2 divers 0.153 mMA 02 0.723 CO2 divers 0.156 mMA 03 0.723 CO2 divers 0.156 mMA 04 0.723 CO2 divers 0.476 mMA 03 0.476 mMA 0.556 mMA 10.332 0.492 MA 0.476 mMA 10.723 Contantes d'suitors 0.476 mMA 10.724 0.472 MA MA MA 10.725 Contantes d'suitors 0.476 mMA 10.724 0.472 MA MA MA 10.724 MA 6.424 5.784 pK1* pLégende 1.1315E4 mAA pH S23 pK2* NO2 N44 1.1315E4 MA pH S23 pK2* Consol NA Concection du TAC colorméticate TAC consol TAC consons TAC consol TAC consol	3 Unite Equilibre pH mg/l pH Delta pH mg/l A CO_ mg/l CO_ HCO_ CO_ CO_ Table Equilibre A CO_ CO_ CO_ CO_ Table mg/l MG/L CO_ CO_ CO_ Table Equilibre L mg/l Strate Equilibre L Equilibre L viner Equilibre L Equilibre L Equilibre L	Atmosphere Unité 8,66 1.62 1.62 3.68 1.62 3.68 1.62 3.68 1.63 mg/l 1.62 mg/l 1.63 mg/l 1.64 mg/l 1.65 mg/l 1.65 mg/l 1.67 mg/l

Enfin un ajout supplémentaire de chlore peut réagir avec les matières organiques et après réaction, lorsque le chlore libre a réagit totalement, tout se passe comme si l'on avait ajouté un acide :

Fichier Analyse Visu	aliser R	apport Options	?																	
💭 Eau: 1 Etape:	0 E	🗊 Eau: 1 Eta		LP	🗊 Eau: 1 Eta	ipe: 5	L	ржи хх	xxxxxx								-		-	
Val	eur		Valeur	Unité		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité	Atmosphèr	re Unité
Température 16,	2	Température	16,2	°C	Température	16,2	°C		ΣCations	5,932	me/l	pН	7,62	7,38		pН	8,61		,66	
Conductivité 600		Conductivité	584	pS/cm	Conductivité	584	µS/cm	479	ΣAnions	5,941	me/I	Delta pH	0,81	0,57		Delta pH	1,8		.,62	
PH 8		pН	6,88		pH	6,81).		Balance	0,16	%	ACaCO,	-	56,001	mg/l	Δ CO ₂	-39,378	mg/l	26,208	mg/l
TA C 26,]	тн	26,	0E	TH	26,	°f	5,2	H _{CO}	56,353	mg/l	TAC	12,297	17,897	of .	TAC	12,297	of	3,797	T
	-	TA		of	IA		97		HCO,	149,929	mg/i	H,CO,	8,741	21,877	mg/l	H _{CO} ,	0,866	mg/l	,000	mg/i
10,: CO libro (0.0)	5 70	TAC	12,797	of	TAC	12,297	۳ ۲	2,459	<u>CO;</u>	0,049	mg/i	HCO,	149,372	21/,/88	mg/l	HCO,	143,896	mg/i	00,009	mg/i
Coloium 4.9	/0 c	CO ₂ libre	35,602	mg/l	CO ₂ libre	39,992	mg/l	0,909	CO ₂ Total	3,368	m™i/i	<u>co;</u>	0,315	0,272	mg/l	<u>co;</u>	2,953	mg/i	71	mg/i
Magnópium 0.2		Calcium	97,2	mg/l	Calcium	97,2	mg/i	4,85	A.	1,2		CO, Total	2,595	3,928	mm/i	CO ₂ Total	2,422	mm/i	0.659	mMA
Sodium 0,3	47	Magnésium	4,131	mg/l	Magnesium	4,131	mg/i	0,34	Saturatio	0,16		ACO ₂ t	-0,773	0,56	mm/i		-0,945	mmi/i	1.67	ment
Botassium 0.0	85	Sodium	7,981	mg/l	Sodium	7,981	mg/i	0,347	Type	Agressive		Calcium	97,2	119,6	mg/i	Saturatio	9,36		alcifiante	
Ammonium 0.1		Potassium	3,315	mg/l	Potassium	3,315	mg/i	0,085	IsatuCO2	05,08		Isatuco2	10,1	25,27		Туре	Calcinante		alcinario	
Fer divalent 0,1	- 1	Ammonium		mg/l	Ammonium		mg/i		Trait.	Dose impos	ée	<u>è</u>	Tracer	Impr	imer					
Manganèse 0.3	- 1	Fer divalent	0.05	mg/i	Manapakse	9.25	mal	0.2	headli	LIZ			-							
Chlorure 0.7	89	Manganese	8,25	mg/i	Chlorure	51.085	mg/l	1 430	Dose	3.55 ma/l		6	Traitor	Eor	mor				l'incertitude	es
Sulfate 1.3	02	Chlorure	47,555	mg/i	Sulfate	62 406	mal	1 302	Pureté	100,0 %			<u>_</u> latel		liei	Gales				
Nitrate 0.2	41	Sunate	02,490	mg/i	Nitrate	21 142	mal	0.341				_								
Nitrite 0,1		Nitrite	21,142	mg/i	Nitrite	21,112	mal	0,511	Classe d'e	au selon la R	églement	ation Eau a	gressive (C	il. 3)/Ca Cst		Indice	s et Constan	tes	et Constan	(es
Fluorure 0,4		Fluorure	6.8	mg/l	Fluorure	6.8	mal	0.4												
Oxygène diss. 8,0	0 i	Ovorgène diss	8.00	mal	Oxygène diss	8.00	mal	81.2	Fichier											
		oxygene uss.	0,00	pog/t p						1										
Unités d'Entrés	Linité				DU SZ III			e 1												
Unites d'Entree	Onite	Unités d'Er	ntrée Un	ités de Soi	Unites d'Er	ntree Uni	tes de S	ortie												

5-2-2-2) L'hypochlorite de sodium

L'hypochlorite de sodium est commercialisé en solution qui est préparée à partir d'une solution de soude dans laquelle on introduit du chlore gazeux. La réaction est :

$$2 \operatorname{Na^{+}} + 2OH^{-} + Cl_2 \rightarrow 2 \operatorname{Na^{+}} + ClO^{-} + Cl^{-}$$

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.83/136 Pour assurer la stabilité des solutions commerciales, les fabricants laissent un excès de soude qui peut atteindre 1,5 % dans les solutions concentrées à 9,6 % de Cl_2 actif (110 g/l Cl_2). Toutefois la teneur en soude excédentaire peut varier d'un fabriquant à un autre. Or la soude ajoutée, même en faible quantité, à l'eau à traiter entraîne une modification du pH dont il est nécessaire de tenir compte.

D'autre part, la solution d'eau de javel n'est pas stable dans le temps car l'hypochlorite se dismute pour donner des ions chlorure (Cl⁻) et des ions chlorate (ClO₃⁻). On est donc amené à adapter le débit de solution injectée dans l'eau au titre en chlore de la solution lors de son utilisation. Ceci conduit à un accroissement de la quantité de soude injectée à mesure que la solution se détitre. De même la quantité de chlorure et de sodium introduite augmente aussi.

LPLWin tient compte de ces ajouts de soude et de chlorure de sodium en fonction de la concentration en hypochlorite de la solution lors de son utilisation. Pour ce faire, lorsque le réactif sélectionné est l'hypochlorite de sodium, un pavé « Solution mère » apparaît permettant de renseigner le pourcentage de soude contenu dans la solution commerciale initiale, son titre en chlore « Titre init. (g/l) », ainsi que le titre en chlore de la solution lors de son utilisation « Titre Util. (g/l) » :

Les valeurs de 1,5 % pour la teneur en soude en excès et de 110 g/l pour les titres en chlore initial et lors de l'utilisation, sont fixées par défaut.

Simulation des réactions de l'hypochlorite de sodium avec les molécules et les ions présents :

Comme dans le cas du chlore, l'hypochlorite de sodium réagit avec le fer divalent, les ions nitrite et l'ammonium ainsi qu'avec les composés organiques.

Si l'ordre de réactions est le même que dans le cas du chlore la composition de l'eau est sensiblement différente du fait de la présence des ions sodium et de la soude en excès.

1°) L'hypochlorite réagit en premier avec le fer divalent qui est oxydé en Fe^{III} qui précipite :

$$2 \operatorname{Fe}^{2+} + \operatorname{H}_2O + \operatorname{ClO}^{-} \rightarrow 2 \operatorname{Fe}^{3+} + 2 \operatorname{OH}^{-} + \operatorname{Cl}$$

$$\operatorname{Fe}^{3+} + 3 \operatorname{OH}^{-} \rightarrow \operatorname{Fe}(\operatorname{OH})_3$$

Tant que la dose d'hypochlorite de sodium introduite reste inférieure ou égal à 0,5 [Fe^{II}], le résultat sera une diminution de la concentration du fer divalent

2°) Ensuite, l'hypochlorite de sodium oxyde les ions nitrites en nitrate :

$$NO_2^- + ClO^- \rightarrow NO_3^- + Cl^-$$

- 3°) Les nitrites et le fer étant totalement oxydés en nitrates et fer trivalent, l'hypochlorite réagit avec l'ammonium
 - a- La dose de ClO⁻ est inférieure à la concentration de [NH₄⁺], c'est la phase de transformation de l'ammonium en monochloramine :

$$Na^+ + ClO^- + NH_4^+ \rightarrow NH_2Cl + Na^+ + H_2O$$

- b- La dose de ClO⁻ est comprise entre 1 fois et 1,5 fois la concentration de [NH4⁺], l'hypochlorite réagit avec NH2Cl préexistant ou formé s'il restait de l'ammoniaque : Na⁺ + ClO⁻ + 2 NH2Cl → N2+ Na⁺ + 3 Cl⁻ + H2O + 2 H⁺
- c- La dose de ClO⁻ est supérieure à 1,5 [NH₄⁺] mais inférieure à 1,5 [NH₄⁺] + 0,5 [NH₂Cl], C'est le cas où l'eau ne contient que des chloramines ; la réaction est la même que précédemment.
- d- La dose de ClO⁻ est supérieure à 1,5 $[NH_4^+] + 0,5 [NH_2Cl] + [NO_2^-]$: c'est la phase d'oxydation des matières organiques :

 $Na^+ + ClO^- + MO \rightarrow MO_{Ox} + Na^+ + Cl^-$

La simulation du traitement par l'hypochlorite avec LPLWin se fait selon un protocole identique à celui du chlore après avoir éventuellement modifié les données relatives à la solution d'eau de javel utilisée.

5-2-2-3) L'hypochlorite de calcium

L'hypochlorite de calcium (Ca(ClO)₂) est commercialisé en poudre et est préparé par réaction du chlore sur la chaux puis purifié. Théoriquement 1 g d'hypochlorite de calcium correspond à environ 1 g de chlore :

$$2 \operatorname{Cl}_2 + \operatorname{Ca}(\operatorname{OH})_2 \xrightarrow{\bullet} \operatorname{Ca}(\operatorname{ClO})_2 + 2 \operatorname{Cl}^2 + 2 \operatorname{H}^+$$

2 x 71 \cong 143

En réalité, la teneur en chlore des produits commerciaux n'excède pas 70 ou 80 % du fait de la présence d'impuretés constituées généralement de chlorure de sodium, de chaux et de carbonate de calcium. Mais les pourcentages de ces diverses impuretés varient selon le type de fabrication et le producteur. Il n'est donc pas possible de tenir compte de l'effet de ces sels ou hydroxydes sur la composition de l'eau traitée. Ainsi, LPLWin ne prend pas en compte l'effet de ces impuretés. Toutefois, si les teneurs en diverses

impuretés telles que la chaux sont connues, il est possible d'en tenir compte par une addition complémentaire de cette impureté (étape supplémentaire nécessaire).

Les réactions de l'hypochlorite de calcium sont exactement les mêmes que celles de l'hypochlorite de sodium, seul le cation sodium est bien entendu, remplacé par le calcium.

La simulation de ce traitement avec LPLWin se fait selon un protocole identique à ceux des réactifs précédents.

5-2-2-4) Le permanganate de potassium

Ce réactif est le plus souvent utilisé pour l'oxydation du manganèse divalent éventuellement présent dans l'eau, notamment lorsque la concentration du manganèse est supérieure à celle du fer divalent.

Ce réactif réagit aussi avec le fer divalent qui alors oxydé en fer trivalent qui précipite, il réagit aussi plus ou moins rapidement avec les ions nitrite qui sont oxydés en nitrate.

Les équations des réactions sont les suivantes :

a- Oxydation du fer divalent

 $K^{+} + MnO_{4} + 3 Fe^{2+} + 7 H_2O \rightarrow K^{+} + 3 Fe(OH)_3 + MnO_2 + 5 H^{+}$

b- oxidation des ions nitrite

$$2 \text{ K}^{+} + 2 \text{ MnO}_{4} + 3 \text{ NO}_{2} + \text{H}_{2}\text{O} \Rightarrow 2 \text{ K}^{+} + 2 \text{ MnO}_{2} + 3 \text{ NO}_{3} + 2 \text{ OH}^{-}$$

c- Oxydation du manganèse

 $3 \text{ Mn}^{2+} + 2 \text{ MnO}_4^- + 2 \text{ K}^+ + 2 \text{ H}_2\text{O} \rightarrow 5 \text{ MnO}_2 + 4 \text{ H}^+ + 2 \text{ K}^+$

Il convient enfin de rappeler que le permanganate de potassium ne réagit pas avec l'ammonium, contrairement aux trois précédents oxydants.

Aussi, LPLWin tient compte de ces réactions dans l'ordre présenté précédemment. L'exemple suivant montre l'évolution de l'eau sous l'effet de l'ajout de permanganate.

La simulation de ce traitement avec LPLWin se fait selon un protocole identique à ceux des réactifs précédents.

5-2-3) Réactifs réducteurs

Dans les circuits fermés de chauffage ou de climatisation, on est amené à appliquer un traitement de l'eau d'appoint visant à élever le pH si le circuit ne comporte pas d'élément en aluminium et à éliminer l'oxygène dissous afin de limiter la vitesse de corrosion. La réduction de l'oxygène dissous est généralement effectuée par introduction d'un réducteur puissant tel que l'hydrazine ou le sulfite de sodium (catalysé). Mais compte tenu des risques sanitaires liés à l'hydrazine, ce réactif est de moins en moins utilisé (son emploi dans les circuits primaires de production d'eau chaude sanitaire est interdit par le Ministère de la Santé si les échangeurs ne sont pas munis de double paroi). Actuellement le sulfite de sodium entre dans la composition de très nombreuses formulations commerciales destinées au traitement de l'eau entrant dans les circuits de chauffage. Son emploi pour les circuits de climatisation reste limité compte tenu de la vitesse très lente de réaction à basse température.

La réaction de réduction de l'oxygène dissous par le sulfite de sodium est la suivante :

$$2SO_3^{2-} + O_2 + 4Na^+ \Leftrightarrow 2SO_4^{2-} + 4Na^+$$

Le choix de ce réactif nécessite de renseigner la dose de sulfite de sodium puis il suffit de cliquer sur « Appliquer » pour lancer les calculs :

La concentration de l'oxygène dissous est alors diminuée d'une quantité correspond à la stœchiométrie (ici la dose étant supérieure à la valeur correspondant à la réduction de l'oxygène dissous, la concentration de l'oxygène est '0'). La concentration des sulfates est augmentée d'une quantité équivalente à dose de sulfite introduite et cela que la réaction ait été ou non complète. Ceci est lié au fait que, d'une part il n'existe pas dans le tableau de saisie de ligne sulfite, et d'autre part, les sulfites sont très généralement dosés comme des sulfates, étant oxydés par l'oxygène atmosphérique lors du transport ou du traitement de l'échantillon au laboratoire.

5-3) Mise à un TAC imposé

Dans cette partie, LPLWin permet de calculer la dose nécessaire du réactif choisi pour atteindre le TAC souhaité. Comme pour les traitements précédents, le choix du traitement se fait en cliquant sur « Mise à un TAC imposé » dans la liste de gauche. La liste de tous les réactifs utilisables apparaît alors. C'est la même liste que celle qui est disponible pour le traitement de mise à l'équilibre calcocarbonique :

🕞 Eau: 1 Et	ape: O	LF	WIN XX	xxxxx				1
	Valeur	Unité	en me/l		Rés	Traiter		
Température Conductivité pH TH TA Co_libre Calcium Magnésium Sodium Potassium Ammonium Sodium Potassium Ammonium Sodium Nagarése Chionure Sulfate Nitrate Nitrate Nitrate Nitrate Oxygène diss.	16,2 c 569 8 c 26, 16,5 3,448 97,2 4,131 7,981 3,315 0,1 0,3 28,01 62,496 14,942 0,1 0,4 8,00	•C µS/cm •f •f mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	467 5,2 3,3 0,078 4,86 0,347 0,085 0,005 0,004 0,011 0,789 1,302 0,024 8,3	Σ catores Σ Anores Balance HCO2 HCO2 CO2* CO2* CO2* SaturRatio Type SaturQ2 Nom: Classe d'ear Fichier:	5,65 5,65 0,1 4,85 199, 1,00 3,36 0,76 5,61 Calc 5,61	Iraitement à appliquer : Béactif à utiliser : Ajout d'une dose imposée Mais à Infermosée Mise à un pH imposé NaOH Décarbonatation ou adoucissement Saluf alo imposé Saluf alo imposé Alz(S04)3, H-IZC Poise à un pH imposé Poise à un pH imposé Décarbonatation ou adoucissement Saluf alo imposé Saluf alo imposé Alz(S04)3, H-IZC Poise à Une provide trainion Poise à Une participation Mélange Concentration Satu Cato imposé Aération-Déferrisation-Ozonisation Nitrification biologique Imposé Agpliquer Annuler	D D D D D D D D D D D D D D D D D D D): 100
Unités d'E	ntrée Un	ités de S	ortie					

Ne connaissant pas à priori si le TAC imposé sera supérieur ou inférieur au TAC de l'eau, la liste complète des réactifs ayant une influence sur ce paramètre apparaît.

Il suffit ensuite de cliquer sur le réactif choisi et de renseigner le TAC final dans la zone « TAC » et de choisir l'unité correspondante.

On a le choix entre les quatre unités les plus couramment utilisées :

- 1) Degrés français (°f),
- 2) Milliéquivalent par litre (me/l),
- 3) ppm de $CaCO_3$ (ppm),
- 4) Degrés allemands (°D)

Il convient de noter que l'on peut choisir une autre unité de TAC que celle qui a été sélectionnée dans le choix des unités d'entrée (menu « Options » « Unités d'entrée »). Mais, l'unité présélectionnée par défaut est celle qui a été choisie initialement dans les options de calcul :

LPLWin version 5.13				
Fichier Analyse Visualiser Rap	oport Options ?			
Deau: 1 Etape: 0 Exer	mole Version 5 — LOWIN XXXXXX PLWin - Unites des valeurs initiales	/ V		×
Température 15.2 4 Conductivité 600 µ PH 8 10 µ TA 5 6 16,5 CO, libre 0,078 n Calcium 4,86 n Magnésium 0,34 n 0,347 n Potassium 0,385 n Armonium 0,11 n per dvalent 0,11 n	Unité des titres (TA, TAC, TH) C 11 me/l C 12 me/l Unité de concent. Unités de Concent. Ions C mg/l C mg/l mg/l C mg/l C mg/l C mg/l C mg/l C mg/l C mg/l	Unité des températures C ° °C C ° °E Unité de la conductivité C µS/cm C 0hm.cm Ces unités seront utilisées pour Faffichage des valeurs initiales.	ppiquer : pre pre mposée imposée imposé imposé imposé porcé imposé porcé imposé porcé on ou adoucissement osé on on on on on on on on on on)
Manganèse 0,3 n Chiorue 0,789 n Suffate 1,302 n Nitrate 0,241 n Nitrate 0,1 n Fluorure 0,4 n Oxygène diss 8,00 n	Dosage du TAC au point équivalent C Duj C Duj C Non	Valeur du pH de virage		

L'ensemble des champs réactifs, TAC final et unités ayant été renseignés, il suffit de cliquer sur le bouton « Appliquer » pour lancer le calcul.

Si le TAC choisi est inférieur au TAC de l'eau et si le réactif présente un caractère acide ou bien à l'inverse le TAC cible est supérieur au TAC de l'eau et le réactif est basique, le calcul s'effectue normalement :

🙆 LPLWin ve	rsion 5.1	3																
Fichier Analyse	Visualiser	Rappo	ort Option	s?														
D Eau: 1 Et	ape: O	Exem	ole Versio	on 5	💭 Eau: 1 Et	ape: 1	LF	PWIN XX	xxxxxx									
				_			_											
	Valeur	Unité	en me/l			Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
Température	16,2	°C		ΣC	Température	16,2	°C		ΣCations 2 2 2	6,132	me/l	pH	7,54	7,49	_	pH	8,69	
Conductivité	600	µS/cm	492	ΣA	Conductivité	600	µS/cm	492	ΣAnions	6,141	me/l	Delta pH	0,25	0,2	_	Delta pH	1,4	
pН	8			Ba	pH	7,29			Balance	0,15	%	ACaCO,	_	12,051	mg/l	Δ CO ₂	-15,715	mg/l
TH	c 26,	٩f	5,2	H_C	TH	26,	٩f	5,2	H _{CO} ;	23,009	mg/l	TAC	15,	16,209	٩f	TAC	15,	of
TA		٩f		HC	TA		٩f		HCO;	182,603	mg/l	HCO;	12,929	15,699	mg/l	H,CO,	0,866	mg/l
TAC	16,5	٩f	3,309	CC	TAC	15,	٩f	3,	CO3-	0,179	mg/l	HCO;	182,287	197,02	mg/l	HCO;	173,385	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CC	CO ₂ libre	16,329	mg/l	0,371	CO ₂ Total	3,368	mM/I	CO3-	0,318	0,307	mg/l	CO3-	4,298	mg/l
Calcium	4,86	me/I	4,86	λ	Calcium	97,2	mg/l	4,86	λ	0,93		CO ₂ Total	3,202	3,488	mM/I	CO ₂ Total	2,928	mM/I
Magnésium	0,34	me/I	0,34	Sa	Magnésium	4,131	mg/l	0,34	SatuRatio	0,56		∆CO₂t	-0,165	0,121	mM/I	∆CO₂t	-0,44	mM/I
Sodium	0,347	me/I	0,347	Ту	Sodium	7,981	mg/l	0,347	Туре	Agressive	:	Calcium	97,2	102,02	mg/l	Saturatio	13,49	
Potassium	0,085	me/I	0,085	Sat	Potassium	3,315	mg/l	0,085	SatuCO2	26,57		SatuCO2	14,93	18,13		Туре	Calcifiante	
Ammonium	0,1	me/I	0,097	No	Ammonium	1,8	mg/l	0,099	Trait.	TAC imposé		ð	-	1 .	. 1			
Fer divalent	0,1	me/l	0,1		Fer divalent	2,8	mg/l	0,1	Réactif	HCI			Tracer	İmpi	rimer			
Manganèse	0,3	me/l	0,3	-	Manganèse	8,25	mg/l	0,3										-
Chlorure	0,789	me/l	0,789		Chlorure	38,994	mg/l	1,098	Dose	11,294 mg/l		<u>e</u>	<u>T</u> raiter	Fer	mer	Calcu	I d'incertitude	es
Sulfate	1,302	me/l	1,302	_	Sulfate	62,496	mg/l	1,302	Pureté	100,0 %					i			
Nitrate	0,241	me/l	0,241		Nitrate	14,942	mg/l	0,241	Classe d'a	nu nalam la D	<u> </u>	E au la	inèrem ann	ace (CL 2).	/Ca C	Indice	s et Constanl	29
Nitrite	0,1	me/l	0,1	L	Nitrite	4,6	mg/l	0,1	Cidsse die	au sciulti id n	egicillerit		igoronii. Ugi	000. (Ol. 2)r				
Fluorure	0,4	me/l	0,4		Fluorure	6,8	mg/l	0,4										
Oxygène diss.	8,00	mg/l	81,2	Fi	Oxygène diss.	8,00	mg/l	81,2	Fichier:									
Unités d'E	ntrée Un	ités de S	ortie	-	Unités d'E	ntrée Un	ités de S	ortie										

Mais si l'on a choisi un réactif acide et un TAC supérieur au TAC initial ou à l'inverse on a choisi un réactif basique et un TAC final inférieur au TAC initial, il va de soi que la dose sera négative. Ce traitement étant impossible à réaliser dans la pratique, LPLWin signal cette anomalie par un message d'alerte :

Fichier Analyse	Visualiser	3 Rappo	ort Option	ns ?		
💬 Eau: 1 Et	ape: 0	Exem	ple Versi	on 5 L	PWIN XXXXXXX 📃 🗆 🔀	
Température Conductivité pH TH TAC CO ₂ libre Caldium Magnésium Sodium Potassium Fer divalent Nanganèse Chiorure Suifate Nitrate	Valeur 16,2 600 8 c 26, 16,5 0,078 4,86 0,34 0,347 0,085 0,1 0,1 0,1 0,1 0,789 0,789 0,241 0,241	Unité °C µS/cm °f °f °f me/l me/l me/l me/l me/l me/l me/l me/l	en me/l 492 5,2 3,309 0,078 4,86 0,347 0,085 0,097 0,1 0,30 0,789 1,302 0,241 0,5	Σ Cati Σ Anic Balan HCO2 CO2 ⁺ CO2, T λ Satul Type Satul Class	Traiter Ireitement à appliquer : Mise à l'équilibre Apout d'une done imposée Mise à un fléc imposé Température imposée Mise à un fléc imposé Température Température	X
Fluorure Oxygène diss.	0,4 8,00	me/l mg/l	0,4 <i>81,2</i>	Fichi	Oui Non	
Unités d'E	intrée Uni	tés de S	ortie			

Si l'on souhaite continuer le calcul il suffit de cliquer sur « Oui ». Sinon LPLWin revient sur la fenêtre « Traiter... », ce qui permet de modifier le choix.

Cas particulier du choix du chlore

Le chlore réagit, comme on l'a vu pour le traitement à une dose imposée, avec le fer divalent, les ions nitrite et ammonium. Dans le cas du traitement à un TAC imposé, LPLWin tient compte de ces réactions. Deux cas de figure peuvent se présenter :

a) Le TAC final est plus faible que le TAC initial, le calcul peut alors s'effectuer normalement. On peut remarquer que dans l'exemple utilisé, le fer divalent a disparu et la concentration en nitrite a diminué :

🙆 LPLWin ve	rsion 5.1	3															
Fichier Analyse	Visualiser	Rappo	ort Option	s ?													
🗊 Eau: 1 Et				💭 Eau: 1 Et	ape: 1	LI	PWIN XX	xxxxxx									
	Valeur	Unité	en me/l		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst	Marbre	Unité	Equilibre	Atmosphèr	Unité
Température	16,2	°C		Température	16,2	°C		ΣCations	6,032	me/l	pH	7,54	7,48		pH	8,69	
Conductivité	600	µS/cm	492	Conductivité	592	µS/cm	486	ΣAnions	6,041	me/l	Delta pH	0,25	0,2		Delta pH	1,4	
pН	8			pН	7,29			Balance	0,16	%	ACaCO,		11,98	mg/l	A CO ₂	-15,722	mg/l
TH	c 26,	٩f	5,2	TH	26,	٩f	5,2	H,CO,	23,02	mg/l	TAC	14,999	16,201	of	TAC	14,999	of
TA		٩f		ТА		٩f		HCO ₃	182,593	mg/l	H,CO,	12,982	15,744	mg/l	H,CO;	0,866	mg/l
TAC	16,5	٩f	3,309	TAC	14,999	٩f	3,	CO3-	0,179	mg/l	HCO;	182,282	196,928	mg/l	HCO;	173,388	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ libre	16,337	mg/l	0,371	CO ₂ Total	3,368	mM/I	CO3-	0,316	0,305	mg/l	CO3-	4,292	mg/l
Calcium	4,86	me/l	4,86	Calcium	97,2	mg/l	4,86	λ	0,93		CO ₂ Total	3,203	3,487	mM/I	CO ₂ Total	2,928	mM/I
Magnésium	0,34	me/l	0,34	Magnésium	4,131	mg/l	0,34	SatuRatio	0,57		∆CO₂t	-0,165	0,12	mM/I	∆CO₂t	-0,44	mM/I
Sodium	0,347	me/I	0,347	Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,2	101,992	mg/l	Saturatio	13,55	
Potassium	0,085	me/I	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	26,59		SatuCO2	14,99	18,18		Туре	Calcifiante	
Ammonium	0,1	me/I	0,097	Ammonium	1,8	mg/l	0,099	Trait.	TAC imposé		a	-	1 .	. 1			
Fer divalent	0,1	me/I	0,1	Fer divalent		mg/l		Réactif	CI2			l racer	Impr	imer			
Manganèse	0,3	me/l	0,3	Manganèse	8,25	mg/l	0,3	-					-				1
Chlorure	0,789	me/l	0,789	Chlorure	35,449	mg/l	0,999	Dose	7,436 mg/l		P	<u>T</u> raiter	F <u>e</u> rr	mer	Calcu	l d'incertitude	es
Sulfate	1,302	me/l	1,302	Sulfate	62,496	mg/l	1,302	Purete	100,0 %								
Nitrate	0,241	me/l	0,241	Nitrate	19,889	mg/l	0,321	Classe d'er	au selon la B	éalement	ation Eau lé	aèrem, aar	ess. (Cl. 2)/	'Ca C	Indice	s et Constant	es
Nitrite	0,1	me/l	0,1	Nitrite	0,93	mg/l	0,02			ogiomoni							
Fluorure	0,4	me/	0,4	Fluorure	6,8	mg/l	0,4										
Oxygène diss.	8,00	mg/	81,2	Oxygène diss.	8,00	mg/l	81,2	Fichier:									
Unités d'E	ntrée Ur	nités de S	ortie	Unités d'E	ntrée Un	ités de S	ortie										

b) Le TAC final est plus élevé que le TAC initial, la dose de chlore nécessaire étant négative, il n'est ni réaliste ni possible de calculer l'effet d'une dose de chlore négative sur la composition de l'eau. Ce traitement est donc impossible et LPLWin signale cette impossibilité par un message :

Eau: 1 Et				on 5	
empérature conductivité H A AC co, libre calcium lagnésium codium	Valeur 16,2 600 8 c 26, 16,5 c 0.079 4,86 0,34 0,347 0,085	Unité °C µS/cm °f °f °f me/l me/l me/l me/l	en me/l 492 5,2 3,309 0,078 4,86 0,34 0,347 0,085	ΣCa ΣAn Bala H,CC CO [*] CO ₁ λ Satt Typ Satu	Traiter Iraitement à appliquer : Ajout d'une dose imposée Ajout d'une dose imposée Mise à un pH imposé Décabonatation ou adoucissement Satur Bait imposée CalDH12 HD CalDH12 CalDH12 <
ummonium er divalent fanganèse hlorure sulfate litrate litrite luorure Dxy gène diss.	0,1 0,3 0,789 1,302 0,241 0,1 0,4 8,00	me/l me/l me/l me/l me/l me/l me/l	0,097 0,1 0,3 0,789 1,302 0,241 0,1 0,4 <i>81,2</i>	Nom: Cla:	Aération-Déferrisation-Dzonisation Image: Constraint of the second sec

Il convient alors de choisir un autre réactif (basique) ou un autre TAC final plus faible que le TAC initial.

Calcul d'incertitudes

Comme pour la mise à l'équilibre, l'objet de l'étape étant le calcul d'une dose de réactif, le bouton « Calcul d'incertitudes » est activé. En cliquant sur ce bouton la fenêtre de calcul apparait.

LPLWin version 5.13					
Fichier Analyse Visualiser Rapport Optic	ons ?				
The Faust 1 Etapost 0 - Exomple 1					
Lud. T Etape. O Exempte (🕼 Eau: 1 Etape: 1	LPWIN XXXXXXXX		🛛	
Valeur Unité en r	Valour	Incertitudes sur les résultats de l'Eau : 1 - El	ape: 1		X
Température 16,2 °C	Température 16.2	- Paramètres saisis	Résultats		Diagnostic Etape 1
Conductivité 600 µS/cm 492	Conductivité 600			Iraitement	- <u>-</u> -
pH 8	pH 7,29	Température 16,2 ± 0,2 °C	Caractéristiques de l'eau	Mise a un TAL Impose	Type d eau
TH c 26, of 5,2	TH 26,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 1	Agressive (%)
TA ºf	TA		Lamoda 0,93 ± mM/L	Héactif : HCI	Equilibre (%)
TAC 16,5 4 3,3	TAC 15,	TAC 16,547 ± 0,1 1	CO2 Total 3,368 ± mM/L	Dose (mg/l)	Calcifiante (%)
Coloium 4.85 mol 4.86	CO2 libre 16,329	CO2 Libre ± mg/l	Saturatio 0.56 ±	11,294 ±	
Magnéeium 0.34 mel 0.34	Calcium 97,2				Réglementation
Sodium 0,347 me/ 0,3	Magnésium 4,131		Fauilibros		Agressive (%)
Potassium 0.085 me/ 0.08	Sodium 7,981	Calcium 97,2 ± 2 mg/l	Calcium Constant	Marbre	1 (a) more than the second seco
Ammonium 1,8 mg/l 0,09	Potassium 3,315				Antessive (%)
Fer divalent 0,1 me/ 0,1	Ammonium 1,8		pHequi. 7,54 ±	7,49 ±	E - 20 - 20
Manganèse 0,3 me/l 0,3	Mangapèse 8.25	Calculer Imprimer	ACO2 Tot. 0.165 ± mM/l	0.121 ± mM/L	Equilore (%)
Chlorure 0,789 me/l 0,78	Chlorure 38,994	L	,	la ora	Légèrement
Sulfate 1,302 me/l 1,30	Sulfate 62,496		ACaCO3	12,051 ± mg/c	Incrustante [4]
Nitrate 0,241 me/ 0,2	Nitrate 14,942	r Eermer 🕰 🖄			Incrustante (%)
Nitrite 0,1 me/ 0,1	Nitrite 4,6				
Disustant day 8.00 mail 81	Fluorure 6,8	r			
CXygene user 6,00 mg/r 81/.	Oxygène diss. 8,00	2	,		
Curve and a function of the					
Unites d'Entrée Unités de Sortie	Unités d'Entrée Unité	s de Sortie			
	///				

Après avoir saisi les incertitudes des mesures, il suffit de cliquer sur « Calculer » pour lancer le calcul. Les résultats obtenus portent sur les caractéristiques de l'eau après traitement, sur la dose de réactif et les diagnostics après traitement.

– Paramètres saisis –		Résultats	Traitement	Diagnostic Etape 1
Température 16,2	± 0,2 *C	Caractéristiques de l'eau	Mise à un TAC imposé 15 °f	Type d'eau Agressive (%) 100,0
pH 8,0 TAC 16,547	± 0,2 ± 0,1 *f	Lambda 0.93 ± 0.05 mM/L CO2 Total 3.368 ± 0.05 mM/L	Réactif : HCl Dose (mg/l)	Equilibre (%) 00,0
CO2 Libre	± mg/l	Saturatio 0,56 ± 0,08	11,294 ± 0,735	Réglementation
Calcium 97,2	± 2 mg/l	Equilibres Calcium Constant	Marbre	Agressive (%) 00,0
<u>C</u> alculer	<u>I</u> mprimer	pH equi. 7,54 ± 0,01 ACO2 Tot0,165 ± 0,05 mM/L	7,49 ± 0,02 0,121 ± 0,04 mM/L	Agressive (%) Equilibre (%) 13,9
Fermer		∆CaCO3	12,051 ± 3,71 mg/L	Incrustante (%) 0,0

5-4) Mise à un pH imposé

Dans cette partie, LPLWin permet de calculer la dose nécessaire du réactif choisi pour atteindre le pH souhaité. Comme pour les traitements précédents, le choix du traitement se fait en cliquant sur « Mise à un pH imposé » dans la liste de gauche. La liste de tous les réactifs utilisables apparaît alors. C'est la même liste que celle qui est disponible pour le traitement de mise à l'équilibre calcocarbonique ou pour la mise à un TAC imposé :

₽ Eau: 1 Eta				or						
	Valeur	Unité	en me/l		Traiter					L
empérature	16.2	°C	C.T.T.G.T							
Conductivité	600	uS/cm	492		Traitement à appliquer :	_	<u>Réactif à utiliser :</u>		pH :	
H	8	- span			Mise à l'équilibre	^	Na2003	~	8.5	
TH	c 26.	of	5.2		Ajout d'une dose imposée		Ca[UH]2			
TA .		of			Mise à un rH imposé		HCI			
AC	16.5	of	3,309		Température imposée		CI2			
CO, libre	c 0.078	me/	0.078		Décarbonatation ou adoucissement		FeCI3			
alcium	4.86	me/l	4,86		SatuRatio imposé		Al2(SO4)3, nH2O			
Magnésium	0.34	me/l	0,34		Mélange		CaCO3 pMa0			
Sodium	0,347	me/l	0,347		Concentration		CaCO3, nMgCO3			
Potassium	0,085	me/l	0,085		Satu CD2 imposé		H2S04	~		
\mmonium	1,8	mg/l	0,097		Aération-Déferrisation-Ozonisation				Pureté (%): 100	
er divalent	0,1	me/l	0,1		Intrincation biologique	<u> </u>				
/anganèse	0,3	me/l	0,3		Appliquer Annuler	1				
Chlorure	0,789	me/l	0,789							
Sulfate	1,302	me/l	1,302							
Nitrate	0,241	me/l	0,241							
Nitrite	0,1	me/l	0,1							
luorure	0,4	me/l	0,4							
Oxygène diss.	8,00	mg/l	81,2		CIIIGI.	-				_

Ne connaissant pas à priori si le pH final sera supérieur ou inférieur au pH de l'eau, la liste complète des réactifs ayant une influence sur ce paramètre, apparaît. Il suffit ensuite de cliquer sur le réactif choisi et de renseigner le pH final dans la zone « pH ». L'ensemble des champs réactifs et pH final ayant été renseignés, il suffit de cliquer sur le bouton « Appliquer » pour lancer le calcul.

Si le pH final est inférieur au pH de l'eau et si le réactif présente un caractère acide ou bien à l'inverse le pH cible est supérieur au pH de l'eau et le réactif est basique, le calcul s'effectue normalement :

🕻 LPLWin	versio	n 5.13																		
Fichier Anal	yse Vis	ualiser R	apport	Options	?															
							_													
f Eaur	1 Eta		Evem	nle Versi	n 5 IDV		🕞 Eau: 1 Et	ape: 1	LI	WIN XX	XXXXXX									
	1 210	per o	exemp		511 5 211	111170	_													
		Valeur	Unité	en me/l		Résul		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	Unité
Tempéra	ature	16.2	°C		Σ Cations	6,132	Température	16,2	°C		Σ Cations	6,228	me/l	pH	7,48	7,58		pН	8,74	
Conduct	ivité	600	µS/cm	492	ΣAnions	6,141	Conductivité	606	µS/cm	497	Σ Anions	6,238	me/I	Delta pH	-1,02	-0,92		Delta pH	0,24	
pН		8			Balance	0,15	pH	8,5			Balance	0,15	%	ACaCO ₃		-21,965	mg/l	ΔCO ₂	-0,485	mg/l
TH		26,	٩f	5,2	H,CO;	4,855	TH	26,	٩f	5,2	H,CO,	1,549	mg/l	TAC	17,03	14,838	of	TAC	17,03	٩f
TA			٩f		HCO;	199,6	TA	0,192	of	0,038	HCO;	200,627	mg/l	H,CO;	16,638	11,673	mg/l	H,CO;	0,866	mg/l
TAC		16,5	٩f	3,309	CO3"	1,016	TAC	17,03	of	3,406	CO3"	3,219	mg/l	HCO;	207,054	180,194	mg/l	HCO;	195,651	mg/l
CO ₂ libre		0,078	me/l	0,078	CO, Total	3,368	CO ₂ libre	1,099	mg/l	0,025	CO, Total	3,368	mM/I	co;	0,319	0,342	mg/l	co;-	5,478	mg/l
Calcium		4,86	me/l	4,86	λ	0,775	Calcium	97,2	mg/l	4,86	λ	0,727	-	CO, Total	3,668	3,148	mM/I	CO, Total	3,313	mM/I
Magnési	ium	0,34	me/l	0,34	SatuRatio	3,19	Magnésium	4,131	mg/l	0,34	SatuRatio	10,07	-	ACO ₂ t	0,3	-0,22	mM/I	ACO ₂ t	-0,055	mM/I
Sodium		0,347	me/l	0,347	Туре	Calcif	Sodium	10,2	mg/l	0,443	Туре	Calcifiant	e	Calcium	97,2	88,414	mg/l	Saturatio	17,12	
Potassiu	um 🛛	0,085	me/l	0,085	SatuCO2	5,61	Potassium	3,315	mg/l	0,085	SatuCO2	1,79		SatuCO2	19,22	13,48		lype	Calcifiante	
Ammoni	um	1,8	mg/l	0,097	Nom: E:	kemple	Ammonium	1,8	mg/i	0,092	Trait.	pH imposé		<u>ک</u>	Tracer	Imori	mer			
Fer diva	lent	0,1	me/l	0,1	,		Her divalent	2,8	mg/l	0,1	Heactif	NaUH			110001					
Mangan	èse	0,3	me/l	0,3			Manganese	8,25	mg/i	0,3	Dore	3.959 ma/l		2	* -	1				1
Chlorure	•	0,789	me/l	0,789		Calcule	Chiorure	28,01	mg/i	0,789	Pureté	100.0 %			Traiter	Fern	ner	Laicu	i d'incettitude	es
Sulfate	_	1,302	me/l	1,302			Suitate	14 042	mg/i	1,302										
Nitrate		0,241	me/l	0,241	Classe die	au selor	Nitrate	19,992	mg/i	0,241	Classe d'e	au selon la R	églement	ation Eau in	crustante (I	Cl. 5)/Ca Ca	it 👘	Indice	s et Constani	tes
Nitrite	_	0,1	me/l	0,1			Fluerer	4,0	mg/i	0,1				,						
Fluorure		0,4	me/l	0,4		_	Overaine des	9.00	mg/i	91.2	Fichier									
Oxygèn	ediss.	8,00	mg/l	81,2	Fichier:	1	Oxygene das.	0,00	jing/i	01/2	Thomas.	1								
		uz. (114					Unités dE	otrée [Uni	ités de S	ortie										
	Res GEN	uee On	KG9 (18 2)	0108																

Mais si l'on a choisi un réactif acide et un pH supérieur au pH initial ou à l'inverse on a choisi un réactif basique et un pH final inférieur au pH initial, il va de soi que la dose sera négative. Ce traitement étant impossible à réaliser dans la pratique, LPLWin signal cette anomalie par un message d'alerte :

LPLWin version Ther Analyse Vi	o <mark>n 5.13</mark> sualiser P	Rapport	Options	?			
Eau: 1 Etc Température Conductivité pH TH TA TAC CO, libre Caldum Magrésium Sodum Potassium Ammonium Ere divalent	Ape: 0 Valeur 16.2 60 8 c 2 16,5 c 0,078 4,86 0,34 0,347 0,085 1,8 0,1	Exemp Unité PC upS/cm of of of of ef me/ me/ me/ me/ me/ me/ me/ me/ me/ me/	en me/l 492 5,2 3,309 0,078 4,86 0,34 0,034 0,0347 0,085 0,097 0,01	on 5 I M M M M H H H H H H H H H H H H H H H	Touris VYVYYYYY Traiter Iraiter Mice à féquitor Mice à un TAC imposé Mice à un TAC imposé Mice à un TAC imposé Température imposé Décatronatation ou adoucisement Satu-Ratio imposé Reminéralisation Mélarga Satu CD2 imposé Actaion-Détemisation-Conisation Mificaio	Bésetit à utiliser: Coloriza Facilità CD2 <	
Manganèse Chlorure Sulfate Nitrate Nitrite Fluorure Oxygène diss. Unités d'El	0,3 0,789 1,302 0,241 0,1 0,4 8,00	me/l me/l me/l me/l me/l mg/l	0,3 0,789 1,302 0,241 0,1 0,4 <i>81,2</i> ortie		Appliquer <u>Annuler</u>	Attention !	

Si l'on souhaite malgré tout, continuer le calcul il suffit de cliquer sur « Oui ». Sinon LPLWin revient sur la fenêtre « Traiter... », ce qui permet de modifier le choix.

Cas particulier du choix du chlore

Le chlore réagit, comme on l'a vu pour le traitement à une dose imposée, avec le fer divalent, les ions nitrite et ammonium. Dans le cas du traitement à un pH imposé, LPLWin tient compte de ces réactions. Deux cas de figure peuvent se présenter :

a) Le pH final est plus faible que le pH initial, le calcul peut alors s'effectuer normalement. On peut remarquer que dans l'exemple utilisé, le fer divalent a disparu et la concentration en nitrite a diminué.

LPLWin versi	on 5.13																	
ichier Analyse V	isualiser R	lapport	Options	?														
																	-	
🕼 Eau: 1 Et				on 5 L	🕼 Eau: 1 Et	ape: 1	u	PWIN XX	XXXXXXX									
	L La s	les av				Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	Unité
Terretori	Valeur	Unite	en meri	TO:U	Température	16,2	°C		ΣCations 2	5,932	me/	pH	7,58	7,43		pH	8,65	
Temperature	16,2			2 Cation	Conductivité	584	µS/cm	479	Σ Anions	5,941	me/	Delta pH	0,58	0,43		Delta pH	1,65	
Conductivite	600	µs/an	492	2.Anion	pH	7,0			Balance	0,16	%	ACaCO,		35,2	mg/l	ΔCO ₂	-28,113	mg/l
pH TH	8	~		Balanc	TH	26,	٩f	5,2	HCO,	40,479	mg/l	TAC	13,58	17,1	of	TAC	13,58	of
TH	c 26,	4 1	5,2	HCO.	TA		of		HCO;	165,512	mg/l	H,CO;	10,67	18,87	mg/l	HCO;	0,866	mg/l
TA		1		HCO;	TAC	13,58	of	2,716	CO:	0,084	mg/l	HCO;	165,027	208,036	mg/l	HCO;	158,267	mg/l
TAC	16,5	ν τ	3,309	<u>co;</u>	CO, libre	28,727	mg/l	0,653	CO, Total	3,368	mM/I	CO3.	0,315	0,286	mg/l	CO3-	3,573	mg/l
CO, libre	c 0,078	me/	0,078	CO, To	Calcium	97,2	mg/l	4,86	λ	1,072		CO, Total	2,883	3,72	mM/I	CO ₂ Total	2,668	mM/
Caldum	9,80	me/	4,85	A	Magnésium	4,131	mg/l	0,34	SatuRatio	0,27		∆CO ₂ t	-0,485	0,352	mM/I	∆CO ₂ t	-0,7	mM/
Magnésium	0,34	me/	0,34	SatuR	Sodium	7,981	mg/l	0,347	Type	Agressive		Calcium	97,2	111,28	mg/l	Saturatio	11,32	
Sodium	0,347	me/	0,347	Туре	Potassium	3,315	mg/l	0,085	SatuCO2	46,75		SatuCO2	12,32	21,79		Type	Calcifiante	
Potassium	0,085	me/	0,085	SatuCO	Ammonium		mgA		Trait	pH imposé		and i		1	1			
Ammonium	1,8	mg/	0,097	Nom:	Fer divalent		mg/l		Réactif	C12			Tjacer	Impr	rimer			
Fer divalent	0,1	me/	0,1		Manganèse	8,25	mg/l	0,3										
Manganèse	0,3	me/	0,3		Chlorure	41.974	maA	1,182	Dose	16,745 mg/	1	e.	Traiter	Fee	mer	Calco	i d'incetitud	es
Chlorure	0,789	me/	0,789		Sulfate	62,496	maA	1,302	Pureté	100,0 %		Lth/	A					
Sulfate	1,302	me/	1,302		Nitrate	21,142	mgA	0,341					manian (C	1.20/0-0-0		Indian	a al Canalani	
Ntrate	0,241	me/	0,241	Classe	Nitrite		maA		Classe d'e	au seion la R	églemeni	tation Lau a	gressive (C	i sylats		Ingice	s et Lonstan	les
Ntrite	0,1	me/	0,1	Chine	Fluorure	6.8	maA	0.4										
Fluorure	0,4	me/	0,4		Oxygège diss	8.00	maA	81.2	Fichiec									
Oxygène diss.	8,00	img/	81,2	Fichier						,								
Unités d'E	ntrée Un	ités de Si	ntie		Unités d'E	ntrée Un	ités de S	ortie					_					

b) Le pH final est plus élevé que le pH initial, la dose de chlore nécessaire étant alors négative, il n'est ni réaliste ni possible de calculer l'effet d'une dose de chlore négative sur la composition de l'eau. Ce traitement est donc impossible et LPLWin signale cette impossibilité par un message. Il convient alors de choisir un autre réactif (basique) ou un autre pH final plus faible que le pH initial.

Remarque : Le chlore étant commercialisé sous forme liquide, il est considéré comme pur ; la fenêtre de saisie de la pureté est donc masquée.

5-5) Mise à une température imposée

Dans cette partie, LPLWin une modification de la température de l'eau étudiée. Seule la température varie. C'est le cas notamment d'une eau chauffée dans un ballon ou un échangeur de préparation d'eau chaude sous pression c'est à dire sans échange de gaz ou précipitation de carbonate de calcium par exemple.

Remarque pratique :

Cette fonction de LPLWin peut être utilisée notamment lorsque l'on prélève une eau chaude et que l'on mesure le pH sur place. Dans ce cas, durant le temps de stabilisation de l'électrode la température de l'échantillon s'abaisse sensiblement. Il convient alors de noter la température de l'échantillon au moment de la mesure du pH. Puis lorsque l'analyse de l'eau est terminée et que l'on procède au calcul d'équilibre calcocarbonique, il convient de saisir le pH mesuré ainsi que température au moment de la mesure. Le premier calcul permet de préciser notamment la concentration du carbone minéral total. Il suffit alors de modifier la température par LPLWIN en entrant la température initiale de l'eau au moment du prélèvement ou dans le réseau pour obtenir de manière rigoureuse les caractéristiques calcocarboniques de l'eau étudiée.

Pour simuler une modification de la température, il suffit de cliquer sur le traitement « Température imposée ». La liste des réactifs disparaît et une fenêtre de saisie de la température apparaît :

🗩 Eau: 1 Et					
Température	Valeur 16,2	Unité ℃	en me/i	Traitement à appliquer :	Température ·
Conductivité	600	µS/cm	492	Mise à l'équilibre	Tomperature .
pH	8			Ajout d'une dose imposée	
TH	c 26,	٩f	5,2	Mise à un TAC imposé	i n
TA		of		Mise à un pH imposé	Č č
TAC	16,5	٩f	3,309	Décathonatation ou adouciseament	5 F
CO ₂ libre	c 0,078	me/I	0,078	SatuBatio imposé	
Calcium	4,86	me/I	4,86	Reminéralisation	
Magnésium	0,34	me/I	0,34	Mélange	
Sodium	0,347	me/I	0,347	Concentration	
Potassium	0,085	me/I	0,085	Satu LUZ Impose	
Ammonium	1,8	mg/l	0,097	Nitrification biologique	
Fer divalent	0,1	me/I	0,1		
Manganèse	0,3	me/I	0,3	Appliquer <u>Annuler</u>	
Chlorure	0,789	me/I	0,789		
Sulfate	1,302	me/I	1,302		
Nitrate	0,241	me/I	0,241		
Nitrite	0,1	me/I	0,1		
Fluorure	0,4	me/I	0,4		
Dvovonène diss	8.00	mal	812	EICORE	

Il convient alors de saisir la température finale souhaitée et d'en vérifier les unités (°C ou °F). L'unité sélectionnée par défaut est celle qui a été fixée lors du choix initial dans le menu « Options », « Unités CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d Pl. 922/136

d'entrée... ». Pour en changer il suffit de cliquer sur le bouton correspondant à l'unité choisie pour le présent calcul. Pour lancer le calcul il convient de cliquer sur le bouton « Appliquer » :

LPLWin version 5.13 hier Analyse Visualiser Rapport Options ?	,													
Eau: 1 Etape: 0 Exemple Versio	1 🕞 Eau: 1 Etaj	pe: 1 Valeur	Lf	WIN XX	xxxxxx	Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphè	re Unité
Temperature 16.2 °C Conductive 600 µS/cm 492 pH 8 600 µS/cm 492 TH 256, 47 5,2 7 TAC 16,5 47 3,309 00 Colume 0,078 me/L 0,078 0,078 Colume 0,078 me/L 0,347 me/L 0,347 Parametium 0,987 me/L 0,987 0,097 0,987	Température Conductivité pH TH TA TAC CO ₂ libre Calcium Magnésium Sodium Potassium	60,0 600 7,76 26, 16,547 4,436 97,2 4,131 7,981 3,315	°C μS/cm °f °f mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1084 5,2 3,309 0,101 4,86 0,34 0,347 0,085	Σ Cations Σ Anions Balance H ₂ C0 [*] HC0 [*] ₁ CO [*] ₁ CO [*] ₂ CO [*] ₁ CO	6,132 6,141 0,15 6,251 198,166 1,09 3,368 0,775 10,93 Calcifiant 14,83	me/l me/l % mg/l mg/l mM/l	pH Delta pH ACaCO_ TAC HCO_ CO_ CO_ CO_ CO_ CO_ Total ACO_t Calcium SatuCO2	6,71 -1,05 16,547 70,663 201,522 0,1 4,445 1,077 97,2 167,67	6,93 -0,83 -44,795 12,087 31,754 146,733 0,116 2,92 -0,448 79,282 75,34	mg/l ∝f mg/l mg/l mM/l mM/l mg/l	pH Delta pH A CO, TAC H ₂ CO [*] CO [*]	8,86 1,11 - 4,137 16,547 0,421 170,367 11,96 2,999 -0,369 119,43 Calcifiante	mg/l ∘f mg/l mg/l mM/l mM/l
Intraction 1.0 mg/l 0.0.07 Rer dvalant 0.1 me/l 0.1 Mangarése 0.3 me/l 0.3 Chiorure 0.789 me/l 0.789 Sulfate 1,302 me/l 1,302 Nirate 0.241 me/l 0.241 Outrage 0.4 me/l 0.4 Oxygène des 8.00 mg/l 84.2 Unités d'Entrée Unités de Sortie Unités de Sortie 1	Ammonium Fer divalent Manganèse Chiorure Sulfate Nitrite Riuorure Oxygène diss.	1,8 2,8 8,25 28,01 62,496 14,942 4,6 6,8 8,00	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,079 0,1 0,3 0,789 1,302 0,241 0,1 0,4 <i>117,7</i>	Trait. Réactif Dose Pureté Classe d'ei Fichier:	Températur au selon la R	e imposér églementa	ation Eau in	Tracer Iraiter	[mpi Ferr	imer	Calcu	l d'incertitud s et Constar	ies ites

5-6) Décarbonatation ou adoucissement

LPLWin permet de simuler les quatre traitements :

- a) Décarbonatation à la chaux
- b) Décarbonatation à la soude
- c) Décarbonatation électrolytique
- d) Adoucissement sur résines

Après avoir sélectionné le traitement de « Décarbonatation ou Adoucissement » la fenêtre « Traiter... » apparaît, avec la liste des « Réactifs à utiliser » qui est la liste des traitements de décarbonatation ou adoucissement.

👫 LPLWin ver	rsion 5.1	3							
Fichier Analyse	Visualiser	Rappo	rt Option	is ?					
fill Faury 1 Ft	ano: 0	Exom	alo Vorsi	op 5 I D\	win -				
0 - Lau. 1 Lu	upe. v	Liveni	JIE VEI SI		i i	Traiter			
	Valeur	Unité	en me/l		R				
Température	16,2	°C		ΣCations	6,	- · · · ·	57 W. W.		
Conductivité	600	µS/cm	492	ΣAnions	6,	Iratement a appliquer :	Heactif a utiliser :	Laicium :	-Valeur à modifier
pH	8			Balance	0,	Mise a l'équilibre	A la chaux		C. Crussel
TH	c 26,	٩f	5,2	HCO,	4,	Mise à un TAC imnosé	Electrolutique	Unité	(• ⊑a++ seu
TA		٩f		HCO;	19	Mise à un pH imposé	A la résine	⊙ mg/l	~ Ca++ et
TAC	16,5	٩f	3,309	CO2-	1,	Température imposée		⊂ mM2I	<u>Mg++</u>
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ Total	3,	Décarbonatation ou adoucissement		⊂ me/l	
Calcium	4,86	me/l	4,86	λ	0,	Beminéralisation			СШ
Magnésium	0,34	me/I	0,34	SatuRati	o 3,	Mélange			
Sodium	0,347	me/l	0,347	Туре	G	Concentration			
Potassium	0,085	me/l	0,085	SatuCO2	5,	Satu CU2 imposé	. I.	D	-
Ammonium	1,8	mg/l	0,097	Nom: E	хеп	Nitrification biologique		Purete (%): [100	
Fer divalent	0,1	me/l	0,1			,	Adoucissemen	t maximum	
Manganèse	0,3	me/I	0,3		- 1	Appliquer <u>A</u> nnuler			
Chlorure	0,789	me/l	0,789		<u>C</u> a		1		
Sulfate	1,302	me/l	1,302						
Nitrate	0,241	me/l	0,241	Classe d'e	sau	Le Ca doit être compris entre le	Ca de l'eau (97,2 mg/l) et le Ca m	inimum (34,221 mg/l)	
Nitrite	0,1	me/l	0,1						
Fluorure	0,4	me/l	0,4						
Oxygène diss.	8,00	img/l	81,2	Fichier:	JC.	procuments and beamigs a renerances document	nts mes procuments i toressionne	1510-011	
Unités d'E	ntrée Un	ités de S	ortie						

Le traitement sélectionné par défaut est la décarbonatation à la chaux

5-6-1) Principe de la Décarbonatation

La décarbonatation a pour objet principal de réduire la concentration du calcium et éventuellement du magnésium. Elle entraîne la réduction concomitante de la concentration du carbone minéral total (CMT). Deux possibilités de traitement consistent en un ajout de chaux ou de soude en quantité suffisante pour précipiter le carbonate de calcium. Un autre traitement de décarbonatation consiste à électrolyser l'eau dans des conditions contrôlées et qui a pour effet de faire précipiter le carbonate de calcium sur la

cathode. Outre l'abaissement des concentrations du calcium, du magnésium et du CMT, ces traitements permettent une diminution significative de la minéralisation totale d'eau.

Si l'on peut quantifier rigoureusement la quantité de carbonate de calcium qui précipite lors d'une décarbonatation, la précipitation du magnésium, ne peut pas être quantifiée à priori. En effet, il précipite sous forme de magnésie (MgO) qui ne se forme qu'à pH supérieur à 10. La réaction est donc réversible puisque la magnésie se redissout lorsque le pH s'abaisse. Ainsi la quantité de magnésium précipité dépend des conditions pratiques (temps de contact avec le réactif basique, pH maximum obtenu lors de la réaction,...) ainsi que de la composition de l'eau (concentration initiale du magnésium, quantité de CaCO₃ précipité,...). Toutefois, cette précipitation est très souvent observée dans la pratique avec généralement un rapport entre le calcium et le magnésium précipité qui est proche de celui de l'eau initiale (Δ [Mg]/ Δ [Ca] ~ [Mg]_{init}/[Ca]_{init}).

5-6-2) Principe de l'Adoucissement

L'adoucissement a pour seul objet de réduire les concentrations du calcium et du magnésium. On utilise généralement des résines cationiques sodiques qui échangent le calcium et magnésium par du sodium. Ce traitement ne modifie pas la concentration du CMT. Il ne modifie pas non plus la minéralisation totale de l'eau.

Lors du passage de l'eau dans le lit de résines, la totalité des ions calcium et des ions magnésium est échangée par du sodium. Ainsi, pour maintenir un TH donné il convient de mélanger cette eau totalement adoucie avec une partie de l'eau non adoucie. L'eau ainsi obtenue conserve le même rapport calcium / magnésium que l'eau dure initiale. Il suffit de fixer le TH souhaité pour connaître les nouvelles concentrations de calcium et de magnésium.

5-6-3) Décarbonatation à la chaux

Sur la droite de la liste des traitements apparaît une fenêtre de saisie de la concentration finale du calcium et les champs unités (mg/l, mM/l et me/l). A droite de celle-ci, une fenêtre « Valeur à modifier » comporte 3 options :

- a) Ca^{2+} seul
- b) Ca^{2+} et Mg^{2+}
- c) TH

Ces trois options permettent de simuler éventuellement la coprécipitation du magnésium. En effet, si la précipitation du carbonate de calcium est rigoureusement quantifiée, Donc LPLWin offre la possibilité :

- a) Soit de considérer que le magnésium ne précipite pas (cas N° 1 où seul Ca²⁺ précipite),
- b) Soit de tenir de la précipitation du magnésium en indiquant la concentration finale de magnésium (cas N° 2 où l'on a prédéterminé, estimé ou mesuré la concentration finale du magnésium)
- c) Soit de considérer que le magnésium précipite en proportion semblable à celle du calcium (cas N° 3 où Δ [Mg] / Δ [Ca] = [Mg]_{init} / [Ca]_{init}), ce qui revient à une simple variation du TH.

Ces indications sont rappelées sous le pointeur lorsque l'on déplace la souris sur chacune de ces options :

S Traiter	Traiter	⊠ .
Existence & Applyon: Beford & utilize : Calcium: Value & anotife Main Schwartz All to todo All to todo Value & anotife Value & anotife Main Schwartz All to todo Decolyspan All to todo Value & anotife Main Schwartz Beford & utilize : Calcium: Value & anotife Value & anotife Schwartz Beford & utilize : Calcium: Value & anotife Care and Care anotife Schwartz Beford & utilize : Calcium: Value & anotife Care anotific Care anotific Schwartz Beford & utilize : Calcium: Value & anotific Care anotific Care anotific Schwartz Beford & utilize : Care anotific Care	Uniterent à repolique: Béodit à villier: Caliun: Value à modifier Mere à l'inguistre Mere à un pl'a modé Mere à un pl'a modé Tempérade are pode Tempérade are pode Tempérade are pode Cancentaion Mérioge Concentration Salu C2 Papade Al se dont à villier: Caliun: Value à modifier de la concentration Salue C2 Papade Value à modifier de la concentration Salue C2 Papade Value à modifier de la concentration Salue C2 Papade Value à modifier de la concentration Tempérade are pode concentration	Kg final
Agoliquer Adoucissement maximum	Agsliquer Annuler C Adoucisement maximum	
Le Ca dol être compris entre le Ca de l'eau (97.2 mg/l) et le Ca minimum (34,4 mg/l)	Le Ca dai être compris entre le Ca de l'eau (67,2 mp/l) et le Ca minimum (34,4 mp/l)	

D'autre part, une case à cocher « Adoucissement maximum » apparaît sous la liste des traitements.

Premier cas : Seul le calcium est modifié

Dans ce cas, il faut simplement fixer la concentration finale de calcium de calcium souhaitée qui doit bien évidemment être inférieure à la concentration initiale mais aussi supérieure à la concentration minimale du calcium (nez de la courbe). Or cette concentration n'est pas connue à priori de l'utilisateur. Ainsi un message indiquant ces deux valeurs (mini et maxi) apparaît en bas de la fenêtre, précédé du logo visible dans les figurent précédentes :

Ensuite, vérifier l'unité de concentration correspondante et cocher si nécessaire l'option choisie (« Ca++ seul » est sélectionnée par défaut). Puis, cliquer sur « Appliquer » pour lancer le calcul. LPLWin donne alors les caractéristiques et la composition de l'eau ainsi décarbonatée et à l'équilibre calco-carbonique. Dans le pavé bleu, la dose de chaux nécessaire figure sur la dernière ligne.

🔆 LPLWin ve	rsion 5.1	3														
Fichier Analyse	Visualiser	Rappor	t Option	s ?												
fin c 4 ca				-								\frown				_
	ape: U	cxemt	ne versio	🕞 Eau: 1 Eta	ape: 1	Exem	ple Versi	on 5 LPW	/IN XXXX	XXXX						
	Valeur	Unité	en me/l	_												
Température	16.2	°C			Valeur	Unité	en me/l		Résultats	Unité				Equilibre	Atmosphè	re Unité
Conductivité	600	uS/cm	492	Température	16,2	°C		ΣCations	3,772	me/l				pH	8,21	_
рН	8			Conductivité	417	µS/cm	342	ΣAnions	3,781	me/l				Delta pH	-0,08	
тн	c 26,	of	5.2	pH	8,29	_		Balance	0,25	%				∆ CO ₂	0,109	mg/l
ТА		of		TH	14,2	٩f	2,84	H,CO;	0,712	mg/l				TAC	4,747	٩f
TAC	16.5	of	3.309	TA		٩f		HCO;	56,45	mg/l				HCO;	0,866	mg/l
CO, libre	c 0,078	me/	0,078	TAC	4,747	٩f	0,949	CO:	0,534	mg/l				HCO;	56,696	mg/l
Calcium	4.86	me/	4.86	CO, libre	0,505	mg/l	0,011	CO, Total	0,946	mM/I				CO3-	0,443	mg/l
Magnésium	0.34	me/	0.34	Calcium	50,	mg/l	2,5	λ	0,775					CO ₂ Total	0,951	mM/I
Sodium	0.347	me/l	0.347	Magnésium	4,131	mg/l	0,34	SatuRatio	1,0					∆CO ₂ t	0,005	mM/I
Potassium	0,085	me/l	0,085	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	0,83	
Ammonium	1,8	mg/l	0,097	Potassium	3,315	mg/l	0,085	SatuCO2	0,82		J			Туре	Agressive	2
Fer divalent	0,1	me/l	0,1	Ammonium	1,8	mg/l	0,095	Trait.	Décarbo, cł	пацк	20	T	I Institutes			
Manganèse	0,3	me/I	0,3	Fer divalent	2,8	mg/l	0,1	Réactif	Ca(OH)2			Tiacet	Imprimer			
Chlorure	0,789	me/	0,789	Manganèse	8,25	mg/l	0,3	Dava	01.004				1			
Sulfate	1,302	me/l	1,302	Chlorure	28,01	mg/l	0,789	Dose	100.0 %		1	<u>I</u> raiter	Fermer			
Nitrate	0,241	me/I	0,241	Sulfate	62,496	mg/l	1,302	T GIOLO	100,0 %							
Nitrite	0,1	me/I	0,1	Nitrate	14,942	mg/l	0,241	Classe d'ex	u selon la R	éalement	ation Ea	u à l'équilibre (C	1. 1)/Ca Cst	Indice	es et Constan	tes 🛛
Fluorure	0,4	me/I	0,4	Nitrite	4,6	mg/l	0,1			-						
Oxygène diss.	8,00	mg/l	81,2	Fluorure	6,8	mg/l	0,4		0.10		0				110	
				Oxygene diss.	8,00	img/l	81,2	Hichier:	JL:\Docum	ents and	SettingsVPi	erresmes docu	ments Mes Docum	ents Profession	nels\Don	
Unités d'E	ntrée Un	ités de So	ortie	Unités d'El	ntrée Un	ités de S	ortie									

L'eau ainsi traitée étant à l'équilibre calco-carbonique le bloc de résultats concernant les caractéristiques à l'équilibre disparaît.

Si l'on souhaite décarbonater l'eau au maximum (jusqu'à la concentration de calcium correspondant au nez de la courbe d'équilibre) il suffit de cocher la case « Adoucissement maximum ». La zone de saisie de la concentration de calcium souhaitée est alors désactivée :

chier Analyse	visualiser	Rappo	ort Option	15 ?			
🛛 Eau: 1 Et	ape: 0			ion 5 📕			
-				⁶	Traiter		E
	Valeur	Unité	en me/l				
Température	16,2	°C		ΣCati			
Conductivité	600	µS/cm	492	ΣAnic	Traitement à appliquer :	<u>R</u> éactif à utiliser :	Calcium : Valeur à modifier
pH	8			Balar	Mise à l'équilibre	A la chaux	
тн	c 26,	٩f	5,2	H,CO	Ajout d'une dose imposée	A la soude	Unité Ca++ seul
ТА		٩f		HCO;	Mise à un pH imposé	A la résine	⊙ mg/l Courset
TAC	16,5	٩f	3,309	CO3-	Température imposée	C Id Iddino	C mM/I C La++ et
CO, libre	c 0,078	me/I	0,078	CO, T	Décarbonatation ou adoucissement		C me/l
Calcium	4,86	me/I	4,86	λ	SatuRatio imposé		СТН
Magnésium	0,34	me/	0,34	Satul	Hemineralisation		
Sodium	0,347	me/l	0,347	Туре	Concentration		
Potassium	0,085	me/	0,085	SatuC	Satu CO2 imposé		
Ammonium	1,8	mg/l	0,097	Nom:	Aération-Déferrisation-Ozonisation		Pureté (%) : 100
Fer divalent	0,1	me/	0,1		Nitrification biologique		
Manganèse	0,3	me/l	0,3		6 1	Adoucissement m	aximum
Chlorure	0,789	me/l	0,789		Appiques Annuler		
Sulfate	1,302	me/	1.302				
Nitrate	0,241	me/	0,241				
Nitrite	0.1	me/	0.1	Class			
Fluorure	0.4	me/l	0.4				
Oxygène diss	8.00	ma	81.2	Fichi			

Après avoir cliqué sur « Appliquer », LPLWin calcule les caractéristiques de l'eau ainsi adoucie et donne, comme ci-dessus, la dose de chaux nécessaire :

hier Analyse	Visualiser	Rappo	rt Option:	s ?												
Eau: 1 Eta	pe: 0	Exemp	ole Versio	🕼 Eau: 1 Et	ape: 1	Ľ	PWIN XX	XXXXXX							_	
	Valeur	Unité	en me/l		Valeur	Unité	en me/l		Résultats	Unité	1			Equilibre	Atmosphè	re Unité
empérature	16,2	°C		Température	16,2	°C		Σ Cations	2,983	me/l				pH	7,45	
onductivité	600	µS/cm	492	Conductivité	353	µS/cm	289	Σ Anions	2,992	me/I				Delta pH	-2,24	
н	8			pН	9,69			Balance	0,32	%				ΔCO ₂	0,613	mg/l
н	26,	of	5,2	TH	10,255	٩f	2,051	H _{CO} ;	0,002	mg/l				TAC	0,802	٩f
A		٩f		TA		٩f		HCO;	3,204	mg/l				H,CO	0,866	mg/l
AC	16,5	٩f	3,309	TAC	0,802	٩f	0,16	CO3-	0,732	mg/l				HCO;	9,707	mg/l
O ₂ libre	0,078	me/I	0,078	CO ₂ libre	0,001	mg/l	0,	CO ₂ Total	0,065	mM/I				CO3-	0,013	mg/l
alcium	4,86	me/I	4,86	Calcium	34,221	mg/l	1,711	λ	0,775					CO ₂ Total	0,173	mM/
lagnésium	0,34	me/I	0,34	Magnésium	4,131	mg/l	0,34	SatuRatio	1,0					∆CO ₂ t	0,109	mM/I
lodium	0,347	me/I	0,347	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	0,02	
otassium	0,085	me/I	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	0,0					Туре	Agressive	e
mmonium	1,8	mg/l	0,097	Ammonium	1,8	mg/l	0,042	Trait	Décarbo, ch	naux	à		1			
er divalent	0,1	me/l	0,1	Fer divalent	2,8	mg/l	0,1	Réactif	Ca(OH)2			Tracer	Imprimer			
langanèse	0,3	me/I	0,3	Manganèse	8,25	mg/l	0,3									
hlorure	0,789	me/I	0,789	Chlorure	28,01	mg/l	0,789	Dose	127,9 mg/l		ല	Traiter	F <u>e</u> rmer	Calcu	al d'incertitud	
iulfate	1,302	me/I	1,302	Sulfate	62,496	mg/l	1,302	Pureté	100,0 %		UTC					
litrate	0,241	me/I	0,241	Nitrate	14,942	mg/l	0,241	Charles de		ź	-	u à l'équilibre l	(CL 1)/Ca Cet	Indice	s et Constar	ites
litrite	0,1	me/I	0,1	Nitrite	4,6	mg/l	0,1	Ciasse die	au seiún lá H	egiement	auun juo	ia a requilibre ((ci. T)rou CSI	mgice	o or contator	
luorure	0,4	me/I	0,4	Fluorure	6,8	mg/l	0,4									
xygène diss.	8,00	mg/l	81,2	Oxygène diss.	8,00	mg/l	81,2	Fichier:								

Deuxième cas : Le calcium et le magnésium sont modifiés de manière indépendante

En cliquant sur cette option, une fenêtre de saisie « Magnésium : » apparaît, où l'on doit saisir la concentration finale souhaitée du magnésium :

Tout d'abord, il faut préciser ou vérifier l'unité choisie Les deux concentrations doivent être exprimées dans la même unité. L'unité sélectionnée par défaut est celle qui a été fixée dans les options « Unités d'entrée… »

Il convient ensuite de renseigner les deux concentrations finales (calcium et magnésium). Il est fortement recommandé de saisir la concentration finale du magnésium en premier et de cliquer sur cette zone de saisie afin d'affiner la fourchette de concentration du calcium tolérée, comme l'indique message situé en bas de la fenêtre « Traiter ».

Puis il suffit de cliquer sur le bouton « Appliquer » pour lancer le calcul :

C LPLWin ver Fichier Analyse	rsion 5.1 Visualiser	3 Rappo	rt Options	: ?												
📴 Eau: 1 Et	ape: 0	Exemp	ple Versio	on 📴 Eau: 1 E	tape: 1	U	PWIN XX	xxxxxx								
	Valeur	Unité	en me/l		Valeur	Unité	en me/l		Résultats	Unité				Equilibre	Atmosphè	re Unité
Température	16,2	°C		Température	16,2	°C		ΣCations	3,514	me/l				pH	8,08	
Conductivité	600	µS/cm	492	Conductivité	396	µS/cm	325	Σ Anions	3,524	me/l				Delta pH	-0,35	
pН	8			pH	8,43			Balance	0,27	%				ΔCO ₂	0,348	mg/l
TH	c 26,	٩f	5,2	TH	12,912	٩f	2,582	H,CO,	0,375	mg/l				TAC	3,459	٩f
TA		٩f		TA		٩f		HCO;	40,623	mg/l				H,CO	0,866	mg/l
TAC	16,5	٩f	3,309	TAC	3,459	٩f	0,692	CO3-	0,521	mg/l				HCO;	41,483	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ libre	0,266	mg/l	0,006	CO ₂ Total	0,681	mM/I				CO3-	0,236	mg/l
Calcium	4,86	me/l	4,86	Calcium	50,	mg/l	2,5	λ	0,904					CO ₂ Total	0,698	mM/I
Magnésium	0,34	me/l	0,34	Magnésium	1,	mg/l	0,082	SatuRatio	1,0					∆CO₂t	0,017	mM/I
Sodium	0,347	me/l	0,347	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	0,45	
Potassium	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	0,43					Туре	Agressiv	e
Ammonium	1,8	mg/l	0,097	Ammonium	1,8	mg/l	0,093	Trait	Décarbo, cl	aux			1			
Fer divalent	0,1	me/l	0,1	Fer divalent	2,8	mg/l	0,1	Réactif	Ca(OH)2		8	Tracer	Imprimer			
Manganèse	0,3	me/l	0,3	Manganèse	8,25	mg/l	0,3									
Chlorure	0,789	me/l	0,789	Chlorure	28,01	mg/l	0,789	Dose	121,046 mg	Л	産	Traiter	Fermer	Calcu		es
Sulfate	1,302	me/l	1,302	Sulfate	62,496	mg/l	1,302	Pureté	100,0 %			-	L			
Nitrate	0,241	me/l	0,241	Nitrate	14,942	mg/l	0,241	41 The second se								
Nitrite	0,1	me/l	0,1	Nitrite	4,6	mg/l	0,1	Classe d'eau selon la Réglementation Lau a l'equilibre (U. 1)/La Lst Ingroes et Constantes								
Fluorure	0,4	me/l	0,4	Fluorure	6,8	mg/l	0,4									
Oxygène diss.	8,00	mg/l	81,2	Oxygène diss.	8,00	mg/l	81,2	Fichier:								
Unités d'E	ntrée Un	ités de S	ortie	Unités d'I	Intrée Un	ités de S	ortie									

Comme dans le cas précédent, on peut sélectionner l'adoucissement maximum en cochant la case « Adoucissement maximum ». La fenêtre de saisie du calcium n'est plus accessible mais celle du magnésium le reste et il faut renseigner la valeur du magnésium final souhaité :

Fichier Analyse Visualiser Rapport Options ? Image: Description 1 Image: Description 2 Image: Descrint 2 Image: Descrip
Eau: 1 Etape: 0 Exemple Version 5 LPWIN XXXXXXXXXX Valeur Unité en men Xcat Consuctivité 60 us/on 992 Zcat Definition 1 Scatter Béacil à utilizer: Calcium: Valeur à modifier
Valeur Unité en meil S' Traiter Température 16.2. *C Scat Consuctivité 600 us/on 492 EAn PH 8 e Bate Linitement à opliquer : Béacil à utilizer : Calcium :
Lemperature 126,2 °C 22,34 Conductive 600 µS/m 492 ZAn PH 8 Baba Internet à applique : Réactif à utiliter : Calcium : Valeur à modifier
pH 8 Bata Iraitement à appliquer : Réactif à utiliser : Calcium : Valeur à modifier
Valeur à modifier
LIE C /b PT 5 / LIEU C Mice a Cogulibre
TA OF HOO Alessimpsée Alessude Utaté Carriero
TAC 16.5 of 3.309 CO2 Mise à un TAC imposé Electrolytique Grand
CO, libre c 0.078 me/ 0.078 CO. Mise à un pH imposé A la résine C mM/ Catter et
Calcium 4.86 mc/ 4.86 A Décatopostation ou adjunissement
Magnésium 0,34 me/l 0,34 Satu SatuRatio inposé
Sodium 0,347 me/l 0,347 Type Reminéralisation
Potassium 0,085 me/l 0,085 Satu Mélange Magnésium :
Ammonium 1,8 mg/ 0,097 Non: Satu CO2 imposé
Fer divalent 0,1 me/l 0,1 Aération-Déferrisation-Ozonisation
Manganèse 0,3 me/1 0,3 Nitrification biologique
Chlorure 0,789 me/l 0,789
Sulfate 1,302 me/l 1,302 <u>************************************</u>
Nitrate 0,241 me/ 0,241 Clas
Ntrite 0,1 me/ 0,1
Fluorure 0,4 me/l 0,4
Oxygène diss. 8,00 mg/ 81,2 Fich
Unités d'Entrée Unités de Sortie

Puis cliquer sur le bouton « Appliquer » pour lancer le calcul.

Troisième cas : Le calcium et le magnésium sont modifiés dans les mêmes proportions

En cliquant sur cette option, la fenêtre du haut permet de saisir la valeur finale du TH souhaité. Les variations de concentration du magnésium étant proportionnelles à celles du calcium tout revient à modifier le TH qui est le total des deux.

Comme on ne connaît pas à priori la valeur minimale du TH, le message situé en bas de la fenêtre rappelle les bornes de la plage de TH pour laquelle le traitement à la chaux est possible.

Eau: 1 Et	ape: 0	Exem	ple Versi	on 5	LPWIN XXXXXXXX
	Valeur	Unité	en me/l		Traiter
empérature	16,2	°C		ΣCat	
onductivité	600	µS/cm	492	ΣAni	
н	8			Bala	Iraitement à appliquer : <u>R</u> éactif à utiliser : TH : Valuer à modifier .
н	c 26,	٩f	5,2	H,CC	Mise à l'équilibre A la chaux
A		٩f		HCO	Ajout d'une dose imposée A la soude Unité C Da++ seul
AC	16,5	٩f	3,309	CO3	Mise à un 1AC imposé Electrolytique Transmission de la companya de la comp
O ₂ libre	c 0,078	me/l	0,078	CO, 1	Temposée C me/I C La++ et
alcium	4,86	me/l	4,86	λ	Décarbonatation ou adoucissement
agnésium	0,34	me/l	0,34	Satu	SatuRatio imposé
odium	0,347	me/l	0,347	Туре	Reminéralisation
otassium	0,085	me/l	0,085	Satu	Melange Createstation
mmonium	1,8	mg/l	0,097	Nom	Satu CD2 imposé
er divalent	0,1	me/l	0,1		Aération-Déferisation-Ozonisation
langanèse	0,3	me/l	0,3		Nitrification biologique
hlorure	0,789	me/l	0,789		J Adoucissement maximum
ulfate	1,302	me/l	1,302		Appliquer <u>Annuler</u>
litrate	0,241	me/l	0,241	~	
litrite	0,1	me/l	0,1	Ülas	
luorure	0,4	me/l	0,4		Le I H doit etre compris entre le I H de l'eau (26, 1) et le I H minimum (10,216 1)
xvoène diss.	8.00	ma/l	81.2	Fich	

La valeur du TH final étant renseignée et l'unité dans laquelle le TH est entré étant vérifiée, il suffit de cliquer sur la touche « Appliquer » pour lancer le calcul. L'unité sélectionnée par défaut est celle qui a été choisie dans le menu Options « Données d'entrée... ».

🖉 LI	PLWin ver	sion 5.1	3														
Fichie	r Analyse	Visualiser	Rappo	rt Options	?												
fin 1		0			(m)											-	
	lau: 1 Eta	ipe: 0	Exemp	ple versio	Eau: 1 Eta	ape: 1	L	WIN XX	XXXXXX							_	je 🔼
		Valeur	Unité	en me/l		Valeur	Unité	en me/l		Résultats	Unité	1			Equilibre	Atmosphè	ne Unité
Ten	npérature	16,2	°C		Température	16.2	℃		ΣCations	3.932	me/				pH	8.28	C OTINO
Cor	nductivité	600	µS/cm	492	Conductivité	429	uS/cm	352	ΣAnions	3.941	me/l				Delta pH	0.1	
pН		8			pН	8,18			Balance	0,24	%				ΔCO,	-0,163	mg/l
TH		c 26,	٩f	5,2	TH	15,	٩f	3,	H,CO	1,096	mg/l				TAC	5,547	of
TA			٩f		TA		٩f		HCO;	66,404	mg/l				H,CO	0,866	mg/l
TAC	0	16,5	٩f	3,309	TAC	5,547	٩f	1,109	CO3-	0,481	mg/l				HCO;	66,084	mg/l
CO	libre	c 0,078	me/l	0,078	CO ₂ libre	0,778	mg/l	0,018	CO ₂ Total	1,114	mM/I				CO3-	0,603	mg/l
Cal	cium	4,86	me/l	4,86	Calcium	56,077	mg/l	2,804	λ	0,847					CO ₂ Total	1,107	mM/I
Mag	gnésium	0,34	me/l	0,34	Magnésium	2,383	mg/l	0,196	SatuRatio	1,0					∆CO₂t	-0,007	mM/I
Soc	lium	0,347	me/l	0,347	Sodium	7,981	mg/l	0,347	Туре	Equilibre					Saturatio	1,25	
Pot	assium	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	1,27					Туре	Calcifiante	
Am	monium	1,8	mg/l	0,097	Ammonium	1,8	mg/l	0,096	Trait.	Décarbo, ch	naux	<i>a</i>	-				
Fer	divalent	0,1	me/l	0,1	Fer divalent	2,8	mg/l	0,1	Réactif	Ca(OH)2			Tracer	İmprimer			
Mar	nganèse	0,3	me/l	0,3	Manganèse	8,25	mg/l	0,3	-					· · · · · · · · · · · · · · · · · · ·			1
Chl	orure	0,789	me/l	0,789	Chlorure	28,01	mg/l	0,789	Dose	95,99 mg/l		E -	<u>T</u> raiter	F <u>e</u> rmer	Calcu	I d'incertitud	es
Sult	ate	1,302	me/l	1,302	Sulfate	62,496	mg/l	1,302	Purete	100,0 %				L			
Nitr	ate	0,241	me/l	0,241	Nitrate	14,942	mg/l	0,241	Classe d'a	au celon la R	éalement	ation Ed	u à l'équilibre (Cl	11/Ca Cst	Indice	s et Constar	tes
Nitr	ite	0,1	me/l	0,1	Nitrite	4,6	mg/l	0,1	C10336 0 61	34 30101110111	egiomeni	adon [,			
Flue	orure	0,4	me/l	0,4	Fluorure	6,8	mg/l	0,4									
Ox	/gène diss.	8,00	mg/l	81,2	Oxygène diss.	8,00	mg/l	81,2	Fichier:								
	Unités d'Er	ntrée Uni	ités de S	ortie	Unités d'Er	ntrée Uni	tés de Si	ortie									

Exemple où le TH final demandé est de 15 °f

Il est aussi possible d'obtenir directement l'adoucissement maximum en cochant la case « Adoucissement maximum » :

🗦 Eau: 1 Et			WIN XX				
	Valeur	Unité	en me/l		· · · · ·		
Température	16,2	°C		B Traiter			X
Conductivité	600	µS/cm	492				
pН	8			Traitement à annliquer :	Réactif à utiliser	TH ·	
тн	c 26,	٩f	5,2	Tracenter e apprender.	Hodour d'autoor :		Valeur à modifier
TA		٩f		Aiout d'une dose imposée	A la chaux A la soude	11.37	C. Cate seul
TAC	16.5	of	3,3	Mise à un TAC imposé	Electrolytique	Unite	Corrisou
CO, libre	c 0,08	me/l	0,08	Mise à un pH imposé	A la résine	(<u>•</u> 1	∽ Ca++ et
Calcium	4.86	me/l	4,86	Température imposée		⊂ me/l	<u>Mg++</u>
Magnésium	0.34	me/l	0,34	SatuBatio imposé		C ppm	C 70
Sodium	0.347	me/l	0,35	Reminéralisation		C *D	.• <u>⊨</u>
Potassium	0.085	me/l	0,09	Mélange			
Ammonium	1.8	mg/l	0,1	Concentration			
Fer divalent	0.1	me/l	0,1	Aération Déferrisation Disprisation	1		
Manganèse	0.3	me/l	0,3	Acration Deremsation Pozonisation.			
Chiorure	0.789	me/l	0,79	Appliquer Annuler	Adoucissement ma	aximum	
Sulfate	1.302	me/l	1,3				
Nitrate	0.241	me/l	0,24				
Nitrite	0.1	me/l	0,1				
Eluorure	0.4	mail	0.4				

Il suffit ensuite de cliquer sur « Appliquer » pour obtenir le résultat.

5-6-4) Décarbonatation à la soude

Les possibilités de traitement offertes par LPLWin pour la décarbonatation à la soude sont les mêmes que pour la décarbonatation à la chaux :

Eau: 1 Eta	ape: 0	Exem	ple Versi	on 5 LF	PWIN XXXXXXXX
	Valeur	Unité	en me/l		Traiter
empérature	16,2	°C		ΣCatio	
Conductivité	600	µS/cm	492	ΣAnio	
н	8			Balan	Iraitement à appliquer : <u>Béactif à utiliser :</u> Calcium : Velue à perféren
н	c 26,	٩f	5,2	H,CO	Mise à l'équilibre
A		٩f		HCO;	Ajout d'une dose imposée A la soude Linité Ca++ seul
AC	16,5	٩f	3,309	CO3-	Mise à un TAC imposé Electrolytique mn/l
O ₂ libre	c 0,078	me/l	0,078	CO ₂ T	Mise a un pH imposé Tampén de la resine C mM// C Ca++ et
alcium	4,86	me/l	4,86	λ	Décardine imposee Mg++
/agnésium	0,34	me/l	0,34	SatuF	SatuRatio imposé
Sodium	0,347	me/l	0,347	Туре	Reminéralisation
Potassium	0,085	me/l	0,085	SatuC	Melange Construction
\mmonium	1,8	mg/l	0,097	Nom:	Satu D2 imposé
er divalent	0,1	me/l	0,1		Aération-Déferisation-Ozonisation
/anganèse	0,3	me/l	0,3		Nitrification biologique
Chlorure	0,789	me/l	0,789		Adoucissement maximum
Sulfate	1,302	me/l	1,302		Appliquer <u>Annuler</u>
litrate	0,241	me/l	0,241		
litrite	0,1	me/l	0,1	Llass	
luorure	0,4	me/l	0,4		Le Ca doit être compris entre le Ca de l'eau (97,2 mg/l) et le Ca minimum (1, mg/l)
have and a	8.00	mal	81.2	Fishie	

On peut modifier le calcium seul, le calcium et le magnésium sans proportionnalité ou avec la même proportion. On peut aussi dans chacun des cas opter pour l'adoucissement maximum en cochant la case correspondante. Pour le détail des opérations à effectuer on se reportera à la rubrique 5-6-3) Décarbonatation à la chaux.

5-6-5) Décarbonatation électrolytique

Les possibilités de traitement offertes par LPLWin pour la décarbonatation électrolytique sont les mêmes que pour la décarbonatation à la chaux à l'exception de l'option de l'adoucissement maximum, ce traitement n'étant guère possible dans les conditions normales d'exploitation des procédés actuellement mis sur le marché.

Fichier Analyse	rsion 5.1 Visualiser	3 Rappo	rt Option	is ?										
📴 Eau: 1 Et	ape: 0	Exem	ole Versi	on 5 I	PWIN XXXXXXX									
Température Conductivité pH TH TA CQ, libre Calcium Magnésium Sodium Potassium Sodium Potassium Anmonium Fer divalent Manganèse Chlorure Sulfate	Valeur 16,2 600 8 c 26, 16,5 c 0,078 4,86 0,347 0,085 1,8 0,3 0,789 1,302 0,241 0,241 0,3 0,789 1,302 0,241 0,241 0,2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	Unité PC US/CM of of of me/ me/ me/ me/ me/ me/ me/ me/	en me/l 492 5,2 3,309 0,078 4,86 0,34 0,34 0,085 0,097 0,1 0,3 0,097 0,1 0,3 0,789 1,302 0,241	Σ Catif Σ Anio Balar H(CO) CO) [*] CO) Traiter Jraitement à appliquer : Mise à l'équilibre Aiout d'une does imposée Mise à un TAC imposé Mise à un TAC imposé Mise à un TAC imposé Température imposée Température imposée Température imposée Température imposée Concentration Satuf-aito imposé Mération posé Ale result Ale result Ale result Mise à un TAC imposé Température imposée Concentration Satu CO2 imposé Adetaion-Décrisation Natrication biologique Appliquer Annuler	Calcium : Unité © mg/1 C mt/1 C mt/1 C mt/1 C mt/1 C mt/1 C TH									
Nitrite Fluorure Oxygène diss.	0,1 0,4 8,00	me/l me/l mg/l	0,1 0,4 <i>81,2</i>	Fichie	s Le Ca doit être compris entre le Ca de l'eau (97,2 mg/l) et le Ca minimum (34,221 mg/l)									
Unités d'E	ntrée Ur	iités de S	ortie											

Toutefois, comme pour les traitements précédents, le message situé en bas de la fenêtre « Traiter », rappelle la plage de décarbonatation possible et notamment les valeurs maximale et minimale du calcium ou du TH. Si l'on souhaite simuler l'adoucissement maximum, il suffit de saisir la concentration du calcium finale ou celle du TH indiquée dans ce message.

Remarque :

Le pH calculé par LPLWin correspond à la décarbonatation sans évasion de CO_2 dans le décarbonateur. Ce pH est inférieur au pH de l'eau issue de l'appareil car. il n'est pas possible à priori de quantifier le dégazage qui dépend des conditions d'exploitation et de la technique utilisée.

Si l'on connaît le pH final il est possible de calculer les caractéristiques de l'eau obtenue en simulant après la décarbonatation un traitement de mise à pH imposé en utilisant le CO_2 comme réactif. La perte de CO_2 dans l'appareil correspond à la dose de CO_2 calculée pour à ce traitement.

5-6-6) Adoucissement sur résines

LPLWin permet de simuler un adoucissement qui consiste à remplacer partiellement le calcium et le magnésium par du sodium.

Lorsque ce traitement est sélectionné, il suffit de renseigner la valeur du TH final souhaité et de vérifier le choix de l'unité :

Eau: 1 Etape: 0 Exemple Version 5		
Valeur Unité en me/l	LPWIN XXXXXXXXX	×
Conductivité pH 600 µS/om 492 EA PH 8 600 µS/om 492 EA PH 8 600 µS/om 492 EA PH 8 67 5,2 HC TA 47 5,5 HC HC TA 16,5 47 3,309 GC CO, liber 0,078 me/A 0,47 GC Calcium 0,347 me/A 0,34 Sat Sodum 0,347 me/A 0,34 Sat Ammonium 1.8 mA 0,997 Nor Ranganète 0,3 me/A 0,39 Pa Marate 0,1 me/A 0,241 IC Marate 0,1 me/A 0,241 IC Marate 0,4 me/A 0,4 IC Marate 0,4 me/A 0,4 IC Marate 0,4 me/A 0,	Iraitement à appliquer: Mise à l'équilàre Aud d'une doce imposée A la chaux Als d'hau d'une doce imposée A la chaux Mise à l'équilàre A la chaux Mise à l'authimosé A la chaux Température imposée A la chaux Décarbonation ou adoussement A la chaux SaturBaio imposée A la chaux Décarbonation ou adoussement A la chaux Mise a model imposée A la chaux Décarbonation ou adoussement A la chaux Mise a model imposée A la chaux Décarbonation ou adoussement A la chaux Mise a model imposée A la chaux Décarbonation ou adoussement A la chaux Mise a model imposée A la chaux A dataine b deimpos	

Comme pour les autres traitements, l'unité sélectionnée par défaut est celle qui correspond aux informations indiquées dans le menu « Options » « Unités d'entrée... ».

					-												
	Valeur	Unité	en me/i		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	re Unité
Température	16,2	°C		Température	16,2	°C		ΣCations	6,132	me/l	pH	7,72	7,76		pH	8,73	
Conductivité	600	µS/cm	492	Conductivité	614	µS/cm	503	ΣAnions	6,141	me/l	Delta pH	-0,28	-0,25		Delta pH	0,73	
H	8	_		pH	8,0			Balance	0,15	%	∆CaCO ₃		-6,407	mg/l	Δ CO ₂	-2,825	mg/l
гн	c 26,	٩f	5,2	TH	15,	٩f	3,	H,CO,	4,847	mg/l	TAC	16,547	15,914	٩f	TAC	16,547	٩f
TA		٩f		TA		٩f		HCO;	199,631	mg/l	H,CO,	9,327	8,263	mg/l	H,CO,	0,866	mg/l
TAC	16,5	٩f	3,309	TAC	16,547	٩f	3,309	CO3-	1,007	mg/l	HCO;	200,696	192,829	mg/l	HCO;	190,468	mg/l
CO ₂ libre	c 0,078	me/l	0,078	CO ₂ libre	3,44	mg/l	0,078	CO ₂ Total	3,368	mM/I	CO3-	0,529	0,55	mg/l	CO3-	5,134	mg/l
Calcium	4,86	me/l	4,86	Calcium	56,077	mg/l	2,804	λ	-0,253		CO ₂ Total	3,449	3,304	mM/I	CO ₂ Total	3,222	mM/I
Magnésium	0,34	me/l	0,34	Magnésium	2,383	mg/l	0,196	SatuRatio	1,9		∆CO₂t	0,082	-0,064	mM/I	∆CO₂t	-0,146	mM/I
Sodium	0,347	me/l	0,347	Sodium	58,581	mg/l	2,547	Туре	Calcifiant	e	Calcium	56,077	53,514	mg/l	Saturatio	9,68	
Potassium	0,085	me/l	0,085	Potassium	3,315	mg/l	0,085	SatuCO2	5,6		SatuCO2	10,77	9,54		Туре	Calcifiante	
Ammonium	1,8	mg/l	0,097	Ammonium	1,8	mg/l	0,097	Trait.	Adoucissem	ient résini	ð⊟ Í	T	L Incode				
Fer divalent	0,1	me/l	0,1	Fer divalent	2,8	mg/l	0,1	Réactif				I racer	Impri	mer			
Vlanganèse	0,3	me/l	0,3	Manganèse	8,25	mg/l	0,3	n									
Chlorure	0,789	me/l	0,789	Chlorure	28,01	mg/l	0,789	Dose			abe	<u>T</u> raiter	Ferr	ner	Calcu	I d'incertitud	es
Sulfate	1,302	me/I	1,302	Sulfate	62,496	mg/l	1,302	Purete									
Nitrate	0,241	me/I	0,241	Nitrate	14,942	mg/l	0,241	Classe d'as	au selon la B	áalamant	ation Eaulé	nèrem incr	ust (CL 4)/	CalC	Indice	s et Constan	tes
Nitrite	0,1	me/I	0,1	Nitrite	4,6	mg/l	0,1	Classe a cr		egiemento							
Fluorure	0,4	me/	0,4	Fluorure	6,8	mg/l	0,4	4									
Dxygène diss.	8,00	mg/l	81,2	Oxygène diss.	8,00	mg/l	81,2	Fichier:									

Le calcul est lancé lorsque, la valeur du TH étant renseignée, on clique sur le bouton « Appliquer » :

5-7) SatuRatio imposé

Ce traitement consiste à ajouter un réactif afin d'atteindre un taux de saturation donné par rapport à l'équilibre calcocarbonique. Il ne diffère pas fondamentalement du traitement de mise à l'équilibre, mais il est très utile lorsque l'on veut rendre l'eau légèrement calcifiante afin de former ou maintenir en place le dépôt protecteur de carbonate de calcium sur les parois d'un ouvrage de transport ou de stockage. Pour cela, le traitement de mise à un *SatuRatio* imposé étant sélectionné, il suffit de sélectionner le réactif dans la liste centrale et de renseigner le taux de saturation final souhaité dans la fenêtre « *SatuRatio* : ».

📴 Eau: 1 Et			WIN XX	xxxxx	_		
	Valeur	Unité	en me/l		Rés (🕽 Traiter	
Température	16,2	∘⊂		ΣCations	5,65		٦
Conductivité	c 569	µS/cm	467	ΣAnions	5,65	<u>I</u> raitement à appliquer : <u>R</u> éactif à utiliser : SatuRatio :	
pH	8			Balance	D,1	Mise à l'équilibre	
TH	с 26,	٩f	5,2	H.CO	1,85	Ajout d'une dose imposée Ca(OH)2	
TA		of		HCO;	199,	Nise à un TAC imposé NaOH	
TAC	16,5	of	3,3	CO;-	1,00	Terminature imposée	
CO ₂ libre	c 3,448	mg/l	0,078	CO ₂ Total	3,36	Décarbonatation ou adoucissement FECI3	
Calcium	97,2	mg/l	4,86	λ),78	SatuRatio imposé Al2(S04)3, nH20	
Magnésium	4,131	mg/l	0,34	SatuRatio	3,24	Reminéralisation PolyAI CI (PAC)	
Sodium	7,981	mg/l	0,347	Туре	Talc	Melange Polyal SU4 (PAS) Conservation CO2	
Potassium	3,315	mg/l	0,085	SatuCO2	5,61	Satu D2 imposé	
Ammonium	0,1	mg/l	0,005	Nom:		Aération-Déferrisation-Ozonisation	
Fer divalent	0,1	mg/l	0,004			Nitrification biologique	
Manganèse	0,3	mg/l	0,011		_		
Chlorure	28,01	mg/l	0,789		Calc	Appliquer <u>Annuler</u>	
Sulfate	62,496	mg/l	1,302		_		
Nitrate	14,942	mg/l	0,241	Classe d'ass			
Nitrite	0,1	mg/l	0,002	Classe d eau	1 201		
Fluorure	0,4	mg/l	0,024				
Oxygène diss.	8,00	mg/l	81,3	Fichier:			
Unités d'E	ntrée Uni	tés de S	ortie				

La liste des réactifs disponibles ne comporte que ceux qui ont un effet sensible sur le taux de saturation. Il s'agit de réactifs à caractère basique ou acide.

Le lancement du calcul s'effectue en cliquant sur le bouton « Appliquer ».

40	LPLWin ver	sion 5.1	3																	
Fich	ier Analyse	Visualiser	Rappo	rt Options	?															
fter	E.u. 4 Et.		Evon	alo Vorsia			for the												_	
9	Lau. I Lu	ipe. U	cxem	pie versio	III J LPA		CP Eau: 1 Et	ipe: 1	L	WIN XX										
		Valeur	Unité	en me/l		Résu		Valeur	Unité	en me/i		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	Unité
Te	empérature	16,2	°C		Σ Cations	6,132	Température	16,2	°C		ΣCations	6,132	me/I	pH	7,5	7,54		pH	8,72	
C	onductivité	600	µS/cm	492	Σ Anions	6,141	Conductivité	600	µS/cm	492	ΣAnions	6,141	me/I	Delta pH	-0,3	-0,26		Delta pH	0,92	
pH	1	8			Balance	0,15	pН	7,8			Balance	0,15	%	ACaCO,		-9,511	mg/l	Δ CO ₂	-4,761	mg/l
TH	H	c 26,	٩f	5,2	H,CO	4,855	TH	26,	٩f	5,2	H,CO	7,574	mg/l	TAC	16,29	15,344	٩f	TAC	16,29	٩f
17/	A		٩f		HCO;	199,6	TA		٩f		HCO;	197,325	mg/l	H,CO	15,26	13,093	mg/l	H,CO	0,866	mg/l
1/	AC	16,5	of	3,309	CO3-	1,016	TAC	16,29	٩f	3,258	CO;	0,636	mg/I	HCO;	198,035	186,406	mg/l	HCO;	187,565	mg/l
C	O ₂ libre	c 0,078	me/I	0,078	CO ₂ Total	3,368	CO, libre	CO_libre 5,375 mg/l 0,122 CO_Total 3,368 mM/l CO_1 0,318 0,327 mg/l CO_1 5,03											5,03	mg/l
Ca	alcium	4,86	me/I	4,86	λ	0,775	Calcium	97,2	mg/l	4,86	λ	0,801		CO ₂ Total	3,498	3,272	mM/I	CO ₂ Total	3,173	mM/I
M	agnésium	0,34	me/l	0,34	SatuRatio	3,19	Magnésium	4,131	mg/l	0,34	SatuRatio	2,0		∆CO ₂ t	0,13	-0,095	mM/I	∆CO₂t	-0,195	mM/I
S	odium	0,347	me/l	0,347	Туре	Calci	Sodium	7,981	mg/l	0,347	Туре	Calcifiant	e	Calcium	97,2	93,396	mg/l	Saturatio	15,78	
PO	otassium	0,085	me/I	0,085	SatuCO2	5,61	Potassium	3,315	mg/l	0,085	SatuCO2	8,75		SatuCO2	17,62	15,12		Туре	Calcifiante	
A	mmonium	1,8	mg/l	0,097	Nom: E	xemple	Ammonium	1,8	mg/l	0,098	Trait	Saturation in	nposée	ð	-	1	. 1			
Fe	er divalent	0,1	me/l	0,1			Fer divalent	2,8	mg/l	0,1	Réactif	HCI			l [acer	Impr	imer			
M	anganèse	0,3	me/l	0,3			Manganèse	8,25	mg/l	0,3	-									1
CI	hlorure	0,789	me/l	0,789		Calcu	Chlorure	29,833	mg/l	0,84	Dose	1,8/4 mg/l		6	<u>T</u> raiter	Ferr	ner	Calcu	I d'incertitude	es
SL	ulfate	1,302	me/l	1,302			Sulfate	62,496	mg/l	1,302	Fullete	100,0 %								
	trate	0,241	me/l	0,241	Classe d'e	au seld	Nitrate	14,942	mg/l	0,241	Classe d'es	au selon la B	éclement	ation Eau in	crustante í	CL 5VCa C	st	Indice	s et Constant	tes
N	trite	0,1	me/l	0,1			Nitrite	4,6	mg/l	0,1			egiomerix							
E	uorure	0,4	me/l	0,4			Fluorure	6,8	mg/l	0,4		_								
	xygène diss.	8,00	mg/l	81,2	Fichier:		Oxygène diss.	8,00	mg/l	81,2	Fichier:									
	Unités d'Er	ntrée Uni	tés de S	ortie			Unités d'E	ntrée Uni	tés de S	ortie										

Si le réactif sélectionné présente un caractère acide et que le *SatuRatio* indiqué est supérieur à celui de l'eau initiale, la dose de réactif sera négative, ce qui n'est pas possible dans la pratique. Un message d'alerte signale cette impossibilité. Il en sera de même si, à l'inverse, le réactif présente un caractère basique et que le SatuRatio demandé est inférieur à celui de l'eau initiale.

LPLWin version 5.13 Erbing, Analysis, Venders, Descent, Oktoor, 2														
Fichier Analyse	Visualiser	Rappo	rt Option	s ?										
fel Faux 1 Ft				on 5 LDW/IN Y		_								
1 1 1 1 1 1 1 1 1	ape. v	LACIN	pie versi		🖀 Traiter	×								
	Valeur	Unité	en me/l	Résu										
Température	16.2	°C		ΣCations 6,132	2 Traitement à anniquer : Béachif à utiliser : Sah Batio :									
Conductivité	600	µS/cm	492	ΣAnions 6,141	1 Electric dependent Electric administration and administration administratio administration adm									
pH	8			Balance 0,15	Aigut d'une dose imposée CalOHI2									
TH	c 26,	٩f	5,2	H_CO_ 4,855	5 Mise à un TAC imposé NaOH									
TA		٩f		HCO; 199,6	61 Mise à un pH imposé HCI									
TAC	16,5	٩f	3,309	CO3" 1,016	6 Température imposée CI2									
CO ₂ libre	c 0,078	me/	0,078	CO2 Total 3,368	B Decarbonatation ou adoucissement FeLI3									
Calcium	4,86	me/	4,86	λ 0,775	5 Beninérajation Dis									
Magnésium	0,34	me/	0,34	SatuRatio 3,19	Mélange CaCD3, nMg0									
Sodium	0,347	me/	0,347	Type Calci	ifi Concentration CaCD3, nMgCO3									
Potassium	0,085	me/	0,085	SatuCO2 5,61	Satu CO2 imposé									
Ammonium	1,8	mg/l	0,097	Nom: Example	Nitrification biologique									
Fer divalent	0,1	me/	0,1											
Manganèse	0,3	me/	0,3		Appliquer Annuler									
Chlorure	0,789	me/	0,789	Calcul	de Attention !									
Sulfate	1,302	me/	1,302		Cohuntin at Dán tří ináchdan (Verden vere an timur)									
Nitrate	0,241	me/I	0,241	Classe discussion	Saturato et Reactif Irrealistes / Voulez-Vous continuer?									
Nitrite	0,1	me/I	0,1	Classe d'eau selo										
Fluorure	0,4	me/	0,4		Oui Non									
Oxygène diss.	8,00	mg/l	81,2	Fichier:										
Unités d'E	ntrée Ur	ités de S	ortie											

L'utilisateur peut toutefois, demander à poursuivre le calcul. Pour ce faire, il suffit de cliquer sur « Oui ». Sinon, le logiciel reviendra sur la feuille « Traiter... » afin de modifier la demande.

Dans le cas particulier du chlore, qui peut réagir avec d'autres ions présents dans l'eau, on conçoit que le calcul lié à une dose négative ne soit pas possible. Dans un tel cas le lancement du calcul fait apparaître un message d'erreur bloquant le calcul. Il convient alors de modifier la demande.

🎊 LPLWin ve	rsion 5.1	3			
Fichier Analyse	Visualiser	Rappo	rt Optior	ins ?	
f Eaur 1 Et			olo Vorsi		
gr cau. T ca	ape. 0	LYGUI	pie versi	a Traiter	
	Valeur	Unité	en me/l	Résult	
Température	16,2	℃		ΣCations 6,132 Tratement à anninuer Béactif à utiliser SatuBatio	
Conductivité	600	µS/cm	492	ΣAnions 6,141 June 1 (control of approprint 1 and 1 a	
pH	8			Balance 0,15 Ajout d'une dose imposée CalOH12	
TH	c 26,	٩f	5,2	H,CO. 4,855 Mise a un TAC imposé NaDH	
TA		٩f		HCO; 199,61 Mise à un pH imposé HCI	
TAC	16,5	of	3,309	Log ² 1,016 Dependence in pose	
CO ₂ libre	c 0,078	me/l	0,078	CO, Total 3,368 SatuRatio impose Al2(SO4)3, nH20	
Calcium	4,86	me/l	4,86	A 0,775 Reminéralisation CO2	
Magnésium	0,34	me/l	0,34	SatuRatio 3,19 Mélange C-CR03,nMg0	
Sodium	0,347	me/l	0,347	Lype Calch Contentiation Calcos, migcos	
Potassium	0,085	me/I	0,085	SatuCO2 5,61 Aération-Défenisation	
Ammonium	1,8	mg/I	0,097	Nom: Exemple Nitrification biologique ⊻ LptWip 5	
Per divalent	0,1	me/i	0,1		
Manganese	0,3	me/i	0,3	Appriquer	
Chiorure	1,202	me/i	1,202	Erreur : Reactif choisi et Saturatio demandé incompatibles.	
Nitrate	0.241	men	0.241		
Nitrite	0.1	med	0.1	Classe d'eau selon	
Fluorure	0.4	med	0.4		
Oxygène diss	8.00	mal	81.2	Fichier	
configure acc.	10/00	1.1.21	104/2		
Unités d'E	ntrée Un	ités de S	ortie		

5-8) Reminéralisation

Ce traitement consiste en un ajout de CO_2 et d'un des quatre réactifs calcaires : la chaux (Ca(OH)₂), la dolomie (CaCO₃, n MgCO₃), la dolomie calcinée (CaCO₃, n MgO) et le calcaire pur (CaCO₃). A partir de la version 5.27, LPL propose également un traitement d'addition de CaCO₃ ou de dolomie suivi d'une aération permettant d'éliminer une partie du CO₂. L'objectif de ces traitements est d'accroître la minéralisation de l'eau et de l'amener soit à l'équilibre calcocarbonique, soit à un Saturatio donné.

On peut aussi choisir le paramètre que l'on souhaite fixer : la concentration du calcium finale ou le TH final ou encore le pH final.

Le choix du Saturatio permet notamment de tenir compte de la possibilité de protection des ouvrages métalliques par formation de dépôt calcaire. De même, le choix du pH final peut être exigé notamment par des considérations d'efficacité de la désinfection par le chlore ou l'hypochlorite de sodium.

Dans LPLWin, la sélection de ce traitement fait apparaître la liste des réactifs disponibles, le bloc de choix du paramètre fixé (Ca^{2+} , TH, ou pH) et le cas échéant le bloc d'unités et une fenêtre de saisie de la valeur finale du paramètre. Une fenêtre permet de choisir l'objectif souhaité : équilibre ou Saturatio donné qu'il conviendra de préciser s'il est sélectionné. Enfin, la pureté du réactif choisi peut être renseignée (elle est fixée par défaut à 100 %).

🙆 LPLWin ver	sion 5.27	7						
Fichier Analyse	Visualiser	Rapport	t Options	?				
🕼 Eau: 1 Et	ape: 0	LP	PWIN v5.	27 s:XX	XXXXX			
Température Conductivité pH	Valeur 16,2 c 575 8	Unité ℃ µS/cm	en me/l 471	ΣCa ΣAr Bal	Traiter Iraitement à appliquer : Mise à l'équilibre	<u>R</u> éactif à utiliser : C02 + Ca(OH)2	Calcium :	
TH TA TAC CO, libre Calcium Magnésium Sodium Potassium	c 26,000 17,5 c 3,658 97,2 4,131 7,981 3,315	of of mg/l mg/l mg/l mg/l	5,200 3,500 <i>0,083</i> 4,860 0,340 0,347 0,085	HO CO CO Sat Sat	Ajout d'une dose imposée Mise à un pAi imposé Température imposée Décarbonatation ou adoucissement SaturRatio imposée Tempisée textoon Mélange Concentration Satur DAT imposé	C02 + CaC03, nMg0 C02 + CaC03, nMgC03 C02 + CaC03 CaC03 + Aération CaC03 + Aération CaC03, nMgC03 + Aération	Unité ⊂ mg/l ⊂ mM/l ⊂ me/l	
Ammonium Fer divalent Manganèse Chiorure Sulfate Nitrate Nitrate Nitrite Fluorure Oxy gène diss.	0, 0,2 0, 28,01 62,496 14,942 0 0 0 8,00	mg/i mg/i mg/i mg/i mg/i mg/i mg/i	0,007 0,789 1,302 0,241 <i>81,3</i>	Nom Cl∉ Fic	Aération Défenisation de zonisation Réduc: électrochim. de NO3 et SO4	Choix de la valeur à modifier C La++ C TH Choix de l'objectif C Equilibre C Sa	Pureté (%) : 100	
Unités d'E	intrée Ur	iités de So	ortie					

A partir de la version 5.20, si l'on choisit l'un des deux réactifs dolomitiques, une fenêtre de saisie supplémentaire apparaît, permettant de préciser la teneur en $CaCO_3$ (% en poids) :

Eau: 1 Et	ape: 0	LI	PWIN v5.	27 s:X)				
	Valeur	Unité	en me/l		Traiter			
npérature	16,2	°C		ΣCa				
ductivité	c 575	µS/cm	471	ΣAr	Traitement à appliquer :	<u>Réactif à utiliser :</u>	Calcium :	
	8	-		Bal	Mise à l'équilibre	C02 + Ca(OH)2		-
	c 26,000	°f	5,200	H _C	Ajout d'une dose imposée	CO2 + CaCO3, nMgO	Unité	
-		°†		HCC	Mise à un TAC imposé	CO2 + CaCO3, nMgCO3	• mn/l	
	17,5	*	3,500	<u>co:</u>	Mise a un pri impose Température imposée	CaCO3 + Aération	C mM/I	
libre	c 3,658	mg/l	0,083	<u>co</u> ,	Décarbonatation ou adoucissement	CaCO3, nMgCO3 + Aération	C me/l	
cium	97,2	mg/i	4,860	<u>Λ</u>	SatuRatio imposé		5 110/1	
gnesium	4,131	mg/i	0,340	Sat	Reminéralisation		0.000.000	
ium	7,981	mg/i	0,347	TYP	Conceptration		LaLU3 [%] =	
monium	0	mg/i	0,085	<u>Ican</u>	Satu CD2 imposé		54.2	
divalent	0.2	mg/i	0.007	Nom	Aération-Déferrisation-Ozonisation		Purete [%] : 100	
Inanèse	0,2	mg/i	0,007		Reduc, electrochim, de NU3 et SU4	Choix de la valeur à modifier	-	
orure	28.01	ma/l	0.789		Appliquer Annuler	<u>• С</u> а++ СТ <u>Н</u>	O pH	
ate	62,496	ma/l	1.302					
ate	14,942	mg/l	0,241			Choix de l'objectif		
ite	0	mg/l		Cla		G 5- 7- C 6		
orure	0	mg/l				• Equilibre (S	aturatio :	
oène diss.	8.00	ma/l	81.3	Fic				

Cette fenêtre permet de modifier la valeur initialement saisie dans le menu options (Cf. § 3.5.6). Il convient de rappeler que la valeur saisie ici est le pourcentage de $CaCO_3$ du produit commercial. Si le fournisseur donne la teneur en CaO, il faut impérativement corriger la valeur donnée par le fournisseur d'un facteur 100/56 pour transformer le pourcentage de CaO en pourcentage de CaCO3.

Il n'est donc plus nécessaire de calculer la valeur du terme « n » qui sera recalculé par LPLWin. A titre indicatif on rappelle ci-dessous le calcul de « n ».

Calcul du "n" de la **dolomite non calcinée** (CaCO₃, nMgCO₃ avec n<1 ou merle) et la **dolomite calcinée** (CaCO₃, nMgO avec n<1).

Pour CaCO₃, nMgCO₃ le n se calcul ainsi : $n = %MgCO_3 \times M_{CaCO_3} / %CaCO_3 \times M_{MgCO_3}$

Pour CaCO₃, nMgO le n se calcul ainsi : $n = %MgO \times M_{CaCO3} / %CaCO_3 \times M_{MgO}$.

Sachant que Masse moléculaire $CaCO_3 = 100$, Masse moléculaire $MgCO_3 = 84,31$ et Masse moléculaire MgO = 40,31.

Exemple : Neutraglene (ABA Quimper) pêché sur l'archipel des Iles des Glénan est constitué de 82% CaCO₃ et 13% de MgCO₃.

n = (13 x 100) / (82 x 84,31) = 0,188 => CaCO3, 0,19 MgO.

Lorsque le TH est la valeur à modifier, la fenêtre de saisie supérieure correspond au TH et les unités sont adaptées à ce paramètre :

Eau: 1 Et	ape: 0	LF	PWIN v5.	27 s:XX	XXXXXX		
	Valeur	Unité	en me/l		Traiter		
empérature Conductivité	16,2 c 575 8	°C µS/cm	471	ΣCa ΣAr Bal	Iraitement à appliquer :	<u>R</u> éactif à utiliser :	
'Н 'А	c 26,000	of of	5,200	H,C HCC	Mise à l'équilibre Ajout d'une dose imposée Mise à un TAC imposé	CO2 + Ca(UH)2 CO2 + CaCO3, nMgO CO2 + CaCO3, nMgCO3	Unité
AC O, libre	17,5 c 3,658	°f mg/l	3,500 0,083 4,860	<u>co;</u>	Mise à un pH imposé Température imposée Décarbonatation ou adoucissement	CU2 + CaCU3 CaCU3 + Aération CaCU3, nMgCU3 + Aération	C me/l
Aagnésium Sodium	4,131 7,981	mg/l mg/l	0,340	Sat Typ	SatuRatio imposé Reminéralisation Mélange		C *D CaCO3 (%) =
otassium mmonium	3,315	mg/l mg/l	0,085	<u>Satı</u> Nom	Concentration Satu CO2 imposé Aération-Déferrisation-Ozonisation		54.2 Pureté (%) : 100
Anganèse Norure	0,2	mg/l mg/l	0,789		Réduc. électrochim. de NO3 et SO4	Choix de la valeur à modifier C <u>C</u> a++ • T <u>H</u>	СрН
Sulfate Vitrate Vitrite	62,496 14,942 0	mg/l mg/l mg/l	1,302 0,241	Cla		Choix de l'objectif	
luorure)xygène diss.	0 8,00	mg/l mg/l	81,3	Fic		te Equilibre (C Sa	acurado : j

Enfin, lorsque le pH est le paramètre cible, le bloc des unités disparaît :

🖻 Eau: 1 Et				.27 s:XX	XXXXXX				
Temnérature	Valeur	Unité	en me/l		Traiter				X
Conductivité pH TH TA TAC CO, libre Calcium Magnésium Sodium Potassium	c 575 8 c 26,000 17,5 c 3,658 97,2 4,131 7,981 3,315 0	μS/cm •f •f •f mg/l mg/l mg/l mg/l mg/l	471 5,200 3,500 0,083 4,860 0,340 0,347 0,085	ΣAr Bal H.O CO CO λ Sat Sat	Traitement à appliquer : Mise à l'équilibre Ajout d'une dose imposée Mise à un 24C imposé Température imposée Décarbonatation ou adoucissement SatuPiatio imposé Remnéralission Mélange Concentration Satu C20 imposé	Béactif à utiliser : C02 + Ca(OH)2 C02 + Ca(O3, nMg0 C02 + CaC03, nMgC03 C02 + CaC03 CaC03 + CaC03 CaC03 + Aferation CaC03, nMgC03 + Aferation	pH : CaCO3 (%) = 54.2	1	
Fer divalent Manganèse Chlorure Sulfate Nitrate Nitrite Fluorure Oxygène diss.	0,2 0,2 28,01 62,496 14,942 0 0 8,00	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0,007 0,789 1,302 0,241 <i>81,3</i>	Cla	Aération-Déferisation-Dzonisation Réduc: électrochim, de N03 et S04	Choix de la valeur à modifier <u>C</u> a++ C T <u>H</u> Choix de l'objectif Choix de l'objectif Choix de l'objectif Choix de l'objectif	Pureté (%) : 100]	

Si l'on choisit un Saturatio différent de l'équilibre, la fenêtre de saisie du Saturatio s'active et la valeur 1 apparaît par défaut :

	LPLWin version 5.27 Fichier Analyse Visualiser Rapport Options	?		
Unités d'Entrée Unités de Sortie	Eau: 1 Etape: 0 LPWIN v5.21 Temperature 15,2 °C Conductivité 575 µS/cm 471 PH 8 °C 75 PH 8 °F 7,200 TA 15,20 °F 5,200 TA 28,000 °F 5,200 TAC 17,5 °F 3,500 Co, libre 2,3,558 mg/l 0,083 Radiesium 97,2 mg/l 0,487 Sodum 7,961 mg/l 0,347 Potassium 3,315 mg/l 0,085 Fer divalent 0,2 mg/l 0,007 Magnese 0, mg/l 0,241 Nitrate 62,496 mg/l 0,241 Nitrate 0 mg/l 0,241 Nutrate 0 mg/l 0,241 Nutrate 0 mg/l 0,241 Nutrate 0 mg/l 0,2.3 <td>Statistics Statistics Statis Stati</td> <td>Béactif à utiliser : pH : CO2 + Ca(OH)2 CO2 + Ca(OS) MAGO CO2 + Ca(OS) MAGO CO2 + Ca(OS) MAGO CO2 + Ca(OS) MAGO CO2 + Ca(OS) CaCO3 + Aération CaCO3, nMgCO3 + Aération CaCO3, nMgCO3 + Aération CaC Choix de la valeur à modifier Choix de la valeur à modifier</td> <td>C3 (%) = 2 Mé (%): 100</td>	Statistics Statis Stati	Béactif à utiliser : pH : CO2 + Ca(OH)2 CO2 + Ca(OS) MAGO CO2 + Ca(OS) MAGO CO2 + Ca(OS) MAGO CO2 + Ca(OS) MAGO CO2 + Ca(OS) CaCO3 + Aération CaCO3, nMgCO3 + Aération CaCO3, nMgCO3 + Aération CaC Choix de la valeur à modifier Choix de la valeur à modifier	C3 (%) = 2 Mé (%): 100

Pour lancer le calcul une fois l'ensemble des informations étant renseigné (dans le cas de l'exemple : pH final =7,5 et Saturatio = 2), il suffit de cliquer sur la touche « Appliquer ».

🎊 LPLWin v	ersion 5.2	7																		
Fichier Analys	e Visualiser	Rappo	rt Option	s ?																
6																				
🗊 Eau: 1							lt Fau: 1 Ft	ape: 2		PWIN v5.	27 s:XXXX	0000							ſ	
	Line	lu er				l			-											
	Valeur	Unite	en me/l		Résultats	Unite		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphère	e Unité
Température	16,2	°C		ΣCations	5,639	me/l	Température	16,2	°C		Σ Cations	7,792	me/I	pH	7,20	7,27		pН	8,94	
Conductivité	c 574	µS/cm	471	ΣAnions	5,832	me/l	Conductivité	c 743	µS/cm	609	ΣAnions	7,985	me/I	Delta pH	-0,30	-0,23		Delta pH	1,44	
рн	6,75			Balance	3,36	%	pН	7,50			Balance	2,45	%	ACaCO,		-24,356	mg/l	ΔCO ₂	-18,014	mg/l
TH	26,000	*	5,200	H,CO;	92,447	mg/I H2CO	TH	36,763	٩f	7,353	HCO;	26,249	mg/I H2CO	TAC	28,263	25,827	٥f	TAC	28,263	of
TA	_	of		HCO;	213,378	mg/l	TA		of		HCO;	343,646	mg/l	H,CO	52,688	41,075	mg/I H2CO	H,CO,	0,614	mg/I H2CO
TAC	17,500	of	3,500	<u>co:</u>	0,061	mg/l	TAC	28,263	٩f	5,653	CO;"	0,569	mg/l	HCO;	344,229	314,477	mg/l	HCO;	315,006	mg/l
CO ₂ libre	65,608	mg/l	1,491	CO, Total	4,990	mM/I	CO ₂ libre	18,628	mg/l	0,423	CO ₂ Total	6,066	mM/I	CO31	0,284	0,303	mg/l	CO3T	14,523	mg/l
Calcium	97,200	mg/l	4,860	λ	0,680	mM/l	Calcium	118,702	mg/l	5,935	λ	0,141	mM/I	CO ₂ Total	6,498	5,823	mM/I	CO ₂ Total	5,420	mM/I
Magnésium	4,131	mg/l	0,340	SatuRatio	0,19		Magnésium	17,223	mg/l	1,418	SatuRatio	2,0		∆CO₂t	0,431	-0,244	mM/I	∆CO₂t	-0,646	mM/I
Sodium	7,981	mg/l	0,347	Туре	Agressiv	e	Sodium	7,981	mg/l	0,347	Туре	Calcifiant	e	Calcium	118,702	108,959	mg/l	Saturatio	50,68	
Potassium	3,315	mg/l	0,085	SatuCO2	106,77		Potassium	3,315	mg/l	0,085	SatuCO2	30,32		SatuCO2	60,85	47,44		Туре	Calcifiante	
Ammonium		mg/l		Trait.	Dose impos	sée	Ammonium		mg/l		Trait	Saturation i	mposée	am (1	1			
Fer divalent	0,200	mg/l	0,007	Réactif	C02		Fer divalent	0,200	mg/l	0,007	Réactif	CaCO3, nM	loC03		Tracer	. 1	mprimer			
Manganèse		mg/l					Manganèse		mg/l		n =	1,00	_							
Chlorure	28,010	mg/l	0,789	Dose	62,/11 mg/	/1	Chlorure	28,010	mg/l	0,789	Dose	99,182 mg/	4	e l	Traiter		Fermer	Cal		des
Sulfate	62,496	mg/l	1,302	Fulete	100,0 %		Sulfate	62,496	mg/l	1,302	Pureté	100,0 %				i				
Nitrate	14,942	mg/l	0,241	Classe dias	u selon la F	Rádementatio	Nitrate	14,942	mg/l	0,241				C	utente (Cl	ELC- C-L	_	India	on at Canata	ntos
Nitrite		mg/l		Classe dec	o sciornia r	regionicitatio	Nitrite		mg/l		Llasse d'e	au selon la H	legiementatio		ustante (ci.	ojzua ust		mgic	es et corista	iles
Fluorure	_	mg/l					Fluorure		mg/l											
Oxygène dis	s. 8,00	mg/l	81,3	Fichier:			Oxygène diss.	8,00	mg/l	81,3	Fichier:									
											-									
Unités	d'Entrée Ur	nités de S	ortie				Unités d'E	ntrée IIIni	tés de S	iortie (
					_	_	Shikes die	01		one										

LPLWin affiche deux étapes successives :

L'étape (Etape 1 dans l'exemple ci-dessus) correspondant à l'ajout de CO₂ qui est un traitement d'ajout d'une dose imposée,

L'étape (Etape 2 de l'exemple) correspondant à l'ajout de dolomie (dans l'exemple présenté) et qui est une mise à l'équilibre.

Pour chacune de ces étapes LPLWin indique le réactif et la dose nécessaire.

Cas particulier de l'addition de CaCO3 ou de dolomie suivie d'une aération :

Ce traitement consiste à faire passer l'eau dans un filtre (dissolveur) à carbonate de calcium ou à calcaire dolomitique puis à aérer l'eau afin d'éliminer le CO_2 en excès afin de la mettre à l'équilibre ou mieux à la rendre calcifiante. Ce traitement est simulé par LPL (version 5.27 et suivantes) qui suit rigoureusement les deux étapes du traitement :

1) Cas de la dissolution de carbonate de calcium ne contenant pas de carbonate de magnésium Les deux étapes sont présentées dans l'ordre suivant :

Etape 1 : Dissolution de CaCO₃ pour atteindre le calcium ou le TH final

Etape 2 : Aération permettant d'atteindre le pH final éventuellement fixé et l'état calcocarbonique souhaité.

				_					- 6-	Traiter			
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.					
Température	25,0	°C		Σ Cations	0,287	me/l	pH			Traitement à appliquer :	Réactif à utiliser :	Calcium :	
Conductivité	c 44	µS/cm	44	ΣAnions	0,290	me/l	Delta pH		1	Mise à l'équilibre		40	
pН	c		4,70	Balance	0,87	%	ACaCO,			Ajout d'une dose imposée	CO2 + CaCO3, nMgO	- Unité	
TH	c 0,026	of	0,005	H.CO.	111,477	mg/I H2CO	TAC			Mise à un TAC imposé	CO2 + CaCO3, nMgCO3	(e mail	
ТА		of		HCO;	2,426	mg/l	H,CO;		4	Mise à un pH imposé	CoCC2 + CaCC3	C mbd/l	
TAC	0,098	٩f	0,020	CO3T	0,000	mg/l	HCO;			l emperature imposee	CaCO3 + Aeration		
CO ₂ libre	u 80	mg/l	1,818	CO, Total	1,838	mM/I	CO3-		4	SatuRatio imposé	Cacoo, ningcoo + Aciatori	() me/i	
Calcium	0,020	mg/l	0,001	λ	-0,009	mM/I	CO ₂ Total			Reminéralisation			
Magnésium	0,05	mg/l	0,004	SatuRatio	0,0		∆CO₂t			Mélange			
Sodium	6,24	mg/l	0,271	Туре	Agressive		Calcium		6	Concentration			
Potassium	0,42	mg/l	0,011	SatuCO2	156,02		SatuCO2			Aération-Déferrisation-Ozonisation	1	Pureté (%) : Inco	
Ammonium	0	mg/l		Nom:			ð	-		Réduc. électrochim. de NO3 et SO4	- Choix de la valeur à modifier-	1 diete (%). [100	
Fer divalent	0	mg/l		'				l lacer			© Ca++ C TH	CoH	
Manganèse	0	mg/l				1				Appliquer <u>A</u> nnuler		- pro	
Chlorure	9,47	mg/l	0,267		Calculer		P	<u>T</u> raiter					
Sulfate	0,16	mg/l	0,003						- 11-		Choix de l'objectif		
Nitrate	0	mg/l		Classe die	au selon la B	éalementatio	n Eau agre	essive (CL 3)/	71		C Equilibre G S	aturatio : 1.5	
Nitrite	0	mg/l		Classe de	uu soluttia ti	ogiornalitatio	- L bu ugra						
Fluorure	0	mg/l											
Oxygène diss.	c 8,28	mg/l	100,0	Fichier:					_				_
Unités d'E	ntrée Un	ités de S	ortie										

Fichier Analyse	visualiser	Rapport	Options ?															_				_	_
🗊 Eau: 1 Et		Eau Wi	📴 Eau: 1 Eta	ape: 1	L	PWIN v5.	27 s:XXXX	XXXX			🕼 Eau: 1 Eta	ape: 2	L	PWIN v5.	27 s:XXXX	xxxx							
	Valeur	Unité		Valeur	Unité	en me/l		Résultats	Unité	Equilibres					n r			1			-	1	Les au
Température	25,0	°C	Température	25,0	°C		Σ Cations	2,286	me/l	pН	Transferture	Valeur	Unite	en me/i	T Californi	Resultat	s Unite				Equilibre	Atmospher	gUnite
Conductivité	c 44	µS/cm	Conductivité	c 227	µS/cm	227	Σ Anions	2,289	me/l	Delta pH	Canduativité	20,0	-0	227	Z Cations	2,200	me/i	Les c	aractéristique	s de l'eau à	pri ta al l	0,57	
pH			pН	6,73			Balance	0,11	%	ACaCO,	Conductivite	0.00	µs/un	221	Palages	2,209	me/i	l'équi	libre sont les	nêmes que		1 424	
TH	c 0,026	of (тн	10,021	of	2,004	H,CO;	50,783	mg/I H2CO	TAC	TH	10.021	of	2.004	HCO*	2 721	we/ H2CO	celles	: de l'eau étue Fécuilibre	liée qui est	TAC 2	10.093	of
TA		of	TA		٩f		HCO;	123,073	mg/l	H,CO;	TA	10,021	of	2,001	HCOT	121 711	mail	acta c	requilibre.		HCO*	0.507	mol H2CO
TAC	0,098	of	TAC	10,093	of .	2,019	co;	0,037	mg/l	HCO;	TAC	10.093	of	2.019	CO:	0.670	mal				HCO:	118.027	mail
CO ₂ libre	80	mg/l	CO, libre	36,039	mg/l	0,819	CO, Total	2,837	mM/I	co;	CO, libre	1,931	mal	0.044	CO, Total	2.050	mMA				COT	2,401	mal
Calcium	0,020	mg/l	Calcium	40,000	mg/l	2,000	λ.	-0,009	mM/I	CO, Total	Calcium	40.000	mail	2.000	λ	-0.009	mMA				CO, Total	1,986	mM/I
Magnésium	0,05	mg/l	Magnésium	0,050	mg/l	0,004	SatuRatio	0,05		ACO ₂ t	Magnésium	0.050	ma/l	0.004	SatuRatio	1.5					ACO.t	-0.064	mM/I
Sodium	6,24	mg/l	Sodium	6,240	mg/i	0,2/1	Type	Agressive		Calcium	Sodium	6,240	mg/l	0,271	Туре	Equilibre					Saturatio	5,36	
Potassium	0,42	mg/l	Potassium	0,420	mg/i	0,011	ISatuco2	71.08		I ISatucoz	Potassium	0,420	mg/l	0,011	SatuCO2	3,81					Туре	Calcifiante	
Ammonium	0	mg/l	Ammonium		mg/i		Trait.	Dose imposé	ie .	<u>è</u>	Ammonium		mg/l		Trait	Saturation	imposée	-	1	1	1		
Fer divalent	0	mg/l	Manapakse		mg/i		Heactr	LaCU3			Fer divalent		mg/l		Réactif	CO2	Imporee	8	Tracer	Imprimer			
Manganèse	0	mg/l	Chicqure	0 470	mail	0.267	Dose	99.950 ma/l		2	Manganèse		mg/l								1		
Chlorure	9,47	mg/l	Sulfate	0.160	mail	0.003	Pureté	100,0 %			Chlorure	9,470	mg/l	0,267	Dose	-34,626 m	g/l	e l	Traiter	Fermer	Ca		Ides
Sultate	0,16	mg/i	Nitrate	0,100	maA	0,000				-	Sulfate	0,160	mg/l	0,003	Pureté	100,0 %		6205		L			
Nitrate	0	mg/i	Nitrite		mal		Classe d'e	au selon la Ré	églementati	on Eau agr	Nitrate		mg/l		Classe d'a	au celon la	Réalementatio	n Eauà	l'équilibre (CL-1	VCa Cst	Indi	es et Constr	antes
Fluence	0	mg/i	Fluorure		ma/l						Nitrite		mg/l		Cidaac d c		rregionionado	41 Januar					
Oxygège diss	- 9.29	mg/i	Oxygène diss.	8,28	mg/l	100.0	Fichier:				Fluorure	_	mg/l									_	
oxygene uss.	c 0,20	ping/i 1						,			Oxygène diss.	8,28	mg/l	100,0	Fichier:								
			Unitán d'E	ntrán Í I In	itás da S	ortin (
Unités d'E	ntrée Ur	ités de Soi	Onkes u E	indee On	ites 08.5	one					Unités d'Er	ntrée Ur	nités de S	ortie									
															_	_	_	_			_		

La dose de CO₂ nécessaire est ici négative et correspond à la quantité à éliminer par l'aération (notamment procédé AQUANEUTRA).

2) Cas de la dissolution de dolomie

Les deux étapes sont présentées dans l'ordre suivant :

- Etape 1 : Dissolution de CaCO₃ pour atteindre le calcium ou le TH final
- Etape 2 : Aération permettant d'atteindre le pH final éventuellement fixé et l'état calcocarbonique souhaité.

🔅 LPLWin vei	rsion 5.2	7											
Fichier Analyse	Visualiser	Rappo	rt Option	s ?									
📴 Eau: 1 Et	ape: O	Eau W	'inandy	LPWIN v	5.27 s:XX	xxxxxx		_	6	Tester			
terus 1 tt Température Conductivité pH TH TA CO, libre Caloium Nognésium Sodium Potassium Ammonium Fer divalent Mangarèse Chiorure Suifate Nitrite	ape: 0 Valeur 25.0 c 44 c 0,026 0,098 80 0,020 0,05 6,24 0,42 0 0 9,47 0,16 0 0	Eau W Unité °C µS/cm °f °f mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	en me/l 44 4,70 0,005 0,020 1,818 0,001 0,004 0,271 0,011 0,267 0,003	Σ Cations Σ Antons Balance HCO; HCO; CO; CO; CO; Type SatuCO2 Nom:	Pésultats 0,287 0,287 0,287 0,029 0,87 111,477 2,426 0,000 0,009 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 Delcular au selon la R	Unité me/i me/i %6 mg/i H2CC mg/i mM/i mM/i mM/i s	Equilibres pH ACaCO_ TAC H_CO_ CO_TOLE CO CO CO CO CO CO CO CO CO CO	Ca Cst N 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Traiter Irelement à appliquer: Mise à l'équibre Ayout d'une doce imposée Mise à l'équibre Ayout d'une doce imposée Température imposée Décathonstation ou adoucissement Satul Alio imposé Remiteratieston Mélange Concentration Satu CD2 imposé Aéstation-Décrisation Ozonisation Reduc: électochim de ND3 té SD4 Appliquer Annuler	Béactif à utiliter : C02 + C4(0H/2) C02 + C4(0H/2) C02 + C4(0H/2) C02 + C4(0H/2) C02 + C4(0H/2) C4(Calcium : 40 90 90 90 90 90 90 90 90 90 9	
Fluorure Oxygène diss.	0 c 8,28	mg/l mg/l	100,0	Fichier:					L				
Unités d'E	ntrée Un	ités de S	ortie										

Remarque :

L'ordre d'introduction des réactifs (CO_2 puis réactif calcaire) est celui qui est conseillé pour limiter les précipitations de CaCO₃ lorsque l'on utilise la chaux. Pour le cas de l'ajout de calcaire dolomitique il va de soi que l'eau devant être agressive, cet ordre est le seul qui permet de dissoudre ce réactif si elle ne contient pas assez de CO₂ pour atteindre les objectifs fixés.

5-9) Mélange de deux eaux

LPLWin permet de simuler directement le mélange de deux eaux. Pour cela il est nécessaire de saisir ou importer les analyses de chacune des deux eaux (eau 1 et eau 2) puis d'indiquer la proportion de l'une d'entre elles dans le mélange.

Soit les 2 eaux données en exemple :

CLPLWin version 5.13																					
Fichier Analyse Visualiser Rapport Options ?																					
	📴 Eau: 1 Et	ape: 0	Exem	ple Versi	on 5 L	.PWIN XXX	Eau: 2 Etape: 0 Sortie 30/06/2008 LPW/IN XXXXXXXX														
		Valeur	Unité	en me/l		Résulta		Valeur	Unité	en me/l		F	Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	e Unité
	Température	16.2	°C		ΣCation	ns 6,132	Température	14,5	°C	· · · · ·	ΣCatio	ins 6	5,523	me/l	pН	7,28	7,29		pH	8,92	
	Conductivité	600	µS/cm	492	ΣAnions	s 6,144	Conductivité	c 623	µS/cm	490	ΣAnio	ns (5,578	me/l	Delta pH	-0,03	-0,02		Delta pH	1,61	
	pН	7,5			Balanc	e 0,19	pН	7,31			Balan	ce (0,84	%	ACaCO ₃		-2,785	mg/l	ΔCO ₂	-27,366	mg/l
	TH	c 26,	٩f	5,2	H,CO	15,497	TH	c 29,558	٩f	5,912	H.CO.		39,464	mg/l	TAC	26,302	26,023	٩f	TAC	26,302	٩f
	TA		٩f		HCO;	201,306	TA		٩f		HCO;	1	320,228	mg/l	H,CO,	42,393	41,171	mg/l	H,CO,	0,903	mg/l
	TAC	16,5	٩f	3,312	CO3"	0,324	TAC	26,1	٩f	5,26	CO ₃ ²⁻	0	0,317	mg/l	HCO;	320,276	316,874	mg/l	HCO;	296,428	mg/l
	CO, libre	c 0,25	me/I	0,25	CO, Tot	al 3,555	CO ₂ libre	c 28,007	mg/l	0,637	CO ₂ To	stal 5	5,891	mM/I	CO3"	0,296	0,298	mg/l	CO;	11,91	mg/l
	Calcium	4,86	me/I	4,86	λ	0,774	Calcium	110	mg/l	5,5	λ		0,12		CO, Total	5,939	5,864	mM/I	CO, Total	5,073	mM/I
	Magnésium	0,34	me/I	0,34	SatuRa	atio 1,02	Magnésium	5	mg/l	0,412	SatuF	tatio	1,07		∆CO ₂ t	0,048	-0,028	mM/I	∆CO₂t	-0,819	mM/I
	Sodium	0,347	me/	0,347	Туре	Equilibr	Sodium	13	mg/l	0,565	Туре		Equilibre		Calcium	110,	108,886	mg/l	Saturatio	40,02	
	Potassium	0,085	me/I	0,085	SatuCO	2 17,9	Potassium	1,8	mg/l	0,046	SatuCO	22	43,71		SatuCO2	46,96	45,6		Type	Calcifiante	
	Ammonium	1,8	mg/l	0,099	Nom:	Exemple V	Ammonium	0	mg/l		Nom:	Sor	tie 30/06/	2008	2	T	1 Invest		N	4	
	her divalent	0,1	me/i	0,1			Fer divalent	0	mg/l						Tiacei	.cer imprimer		Mode de dosage du LA.L.			
	Manganese	0,3	me/i	0,3			Manganèse	0	mg/l								1				
	Chiorure	0,789	me/i	0,789		Laicuer	Chlorure	24	mg/l	0,676	Calculer				Traiter	Fermer		Calcul d'incertitudes			
	Surate	1,302	me/i	1,302			Sulfate	13	mg/l	0,271											
	Nitrate	0,241	me/i	0,241	Classe	d'eau selon k	Nitrate	23	mg/l	0,3/1	Classe	Classe d'eau selon la Réglementation Eau à l'équilbre (Cl. 1)/Ca Cst Indices et Constar								s et Constant	tes
	Elucrum	0,1	med	0,1			Nitrite	0	mg/i												
	Oxygène diss	8.00	ma	81.2	Fichier	CADoc	Coursing dee	c 10.25	mg/i	100.0	Fichie		Sortia 2009	0630 low							
					vxygene ussite 10,23 img/i 200,0 inome. jourezouobooutpw																
	Unités d'E	ntrée Un	ités de S	ortie			Unités d'Entrée Unités de Sortie														

En cliquant sur le bouton « Traiter » puis en sélectionnant « Mélange », LPLWin fait apparaître deux fenêtres de saisie concernant le numéro de l'étape choisie de l'autre eau et sa proportion dans le mélange :

Traitement à appliquer :	Etape autre eau
Mise a requilibre Aiout d'une dose imposée	
Mise à un TAC imposé	% autre eau
Mise à un pH imposé Tampératura imposé	
Décarbonatation ou adoucissement	,
SatuRatio imposé	
Heminéralisation Mélance	
Concentration	
Satu CD2 imposé	
Aeration-Deremsation-Uzonisation.	
Appliquer <u>Annuler</u>	

Le choix du numéro de l'étape sélectionnée permet de simuler le mélange d'eaux ayant subi d'autres traitements au préalable.

La proportion de l'autre eau (que celle qui est active pour le traitement) s'exprime en pourcentage (de 0 à 100).

Ces deux informations étant renseignées, il suffit de cliquer sur « Appliquer » pour effectuer le calcul :

🕼 L	PLWin ver	sion 5.13	}																					
Fichie	er Analyse	Visualiser	Rappor	t Op	otions	?																		
Û	Eau: 1 E	tape: 0	Exem	ple \	/ersio	n 5 LPV	VIN XXX	ŪP E	au: 2 Et	ape: O	Sortie	30/06	/200)8 LPV	/IN XXX	xxxx							_	
Γ		Valeur	Unité	enr	me/I		Résulta			Valeur	Unité	en me/l			Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Ea	uilibre	Atmosphèr	Unité
Т	empérature	16,2	°C			ΣCations	6,132	Tem	pérature	14,5	°C	· · · · · ·		ΣCations	6,523	me/l	pH	7,28	7,29		pH		8,92	
С	onductivité	600	µS/cm	492	2	ΣAnions	6,144	Con	ductivité	c 623	µS/cm	490		ΣAnions	6,578	me/l	Delta pH	-0,03	-0,02		De	lta pH	1,61	
pl	H	7,5		_	_	Balance	0,19	pН		7,31				Balance	0,84	%	ACaCO,		-2,785	mg/l	Δ	CO,	-27,366	mg/l
Т	H	c 26,	٩f	5,2	_	H _{CO}	15,497	TH		c 29,558	٩f	5,912		H,CO	39,464	mg/l	TAC	26,302	26,023	٩f	TA	C	26,302	٩f
Ľ	A		of	_	_	HCO;	201,306	TA			٩f			HCO;	320,228	mg/l	H,CO3	42,393	41,171	mg/l	H,C	:0;	0,903	mg/l
E	AC	16,5	•	3,3	12	CO;	0,324	TAC		26,1	٩f	5,26		CO3-	0,317	mg/l	HCO;	320,276	316,874	mg/l	HC	0;	296,428	mg/l
0	O ₂ libre	c 0,25	me/l	0,2	5	CO, Total	3,555	CO,	libre	c 28,007	mg/l	0,637		CO, Total	5,891	mM/I	CO3-	0,296	0,298	mg/l	CC	3	11,91	mg/l
I F	arcium	4,86	me/l	4,80		A CotuDeti	1.02	Calc	ium	110	mg/l	5,5		λ	0,12		CO, Total	5,939	5,864	mM/I	CC	Total	5,073	mM/I
He I	agnesium	0,34	me/l	0,3	4	SatuRatio	Equilib.	Mag	nésium	5	mg/l	0,412		SatuRatio	1,07	-	∆CO ₂ t	0,048	-0,028	mM/I		O ₂ t	-0,819	mM/I
	otassium	0,047	me/	0,3	/	туре	Tedniin	Sod	um	13	mg/i	0,565		Туре	Equilibre		Calcium	110,	108,885	mg/i	Isa	turatio	40,02 Calcificante	
A	mmonium	1.8	ma	0.0	🕞 Ea	u: 3 Etap	e: 0	Eau 1	(60.0%)	& Eau 2	LPV	VIN XX	XXX	XXX								-	Calcinante	_
Ē	er divalent	0.1	me/l	0.1							_		_	_								lode de	dosage du T	I.A.C.
M	ancanèse	0.3	me/l	0,3		\ \	/aleur	Unité	en me/l		Rés	ultats	Unité	Equilib	res Ca C	st. Mar	bre Unité	Equilibre	e Atmo	sphèrel	Jnité		-	
С	hlorure	0,789	me/l	0,7	Temp	érature	15,52	°C		ΣCation	s 6,28	8	me/l	pH	7,4	7,39		pH	8,82			Calcu	ul d'incertitude	es
s	ulfate	1,302	me/l	1,3	Condu	uctivité c 6	01/	µS/cm	498	2 Anions	6,31	8	me/I	Delta	DH 0,01	0,0		Delta pi	1 1,43					
Ν	itrate	0,241	me/I	0,2	рн		7,39	o£	E 40E	Balanc	e 0,40	5	%	ACaC	0, 00.4	0,34	F mg/i	A CO ₂	-1/,1	LSS F	ng/i	Indiad	e et Constan	han
Ν	itrite	0,1	me/I	0,1	ТА		27,425	-1 of	5,405	HCO-	23,0	022	mg/i	HCO*	20,4	12 20,4	92 °I 51 mal	HCO*	20,45	- 00		mgice	s et constan	
F	uorure	0,4	me/l	0,4	TAC		0 456	of	4 001	CO2-	0.30	4	mg/i	HCO-	248	12 24,0	327 mg/l	HCOT	233.3	146 m				
0	xygène diss.	. 8,00	mg/l	81,	CO. II	hre	17.78	ma/l	0.404	CO. Tot	al 4.49		mM/	CO2-	0.30	3 0.30	8 mg/l	CO2-	7.622) n				
					Calci	um 1	02.32	ma/l	5,116	λ	0.51	2		CO. TO	otal 4,48	5 4.49	3 mM/l	CO. To	al 3.967	7 n	nM/			
	Unités d'E	Entrée Ur	nités de S	ortie	Magne	ésium 4	, 1,479	mg/l	0,369	SatuRa	tio 0,99	9		ACO,	t -0,0	05 0,00	3 mM/l	∆CO,t	-0,52	3 п	nM/I			
					Sodiu	m g	,989	mg/l	0,434	Туре	Agr	essive		Calciu	m 102,	32 102,	456 mg/l	Saturati	io 24,63	3				
					Potas	sium 2	2,709	mg/l	0,069	SatuCO	2 28,4	16		SatuC	02 28,1	1 28,2	3	Туре	Calcifi	iante				
					Ammo	onium 1	L , 08	mg/l	0,06					ð 🗆		1	1							
					Fer di	valent	1,68	mg/l	0,06						liace	r	Imprimer							
					Manga	anèse	1,95	mg/l	0,18						1		;				1			
					Chlor	ure 2	26,406	mg/l	0,744					abc	Iraite	r	F <u>e</u> rmer		alcul d'ince					
					Sulfat	e 4	12,698	mg/l	0,89							<u></u>								
					Nitrat	e 1	18,165	mg/l	0,293	Classe	d'eau se	lon la Ré	gleme	entation E	au à l'équili	bre (Cl. 1)/	Ca Cst		dices et Co	onstantes				
					Nitrite	2	2,76	mg/l	0,06				-											
					Fluoru	ine 4	1,08	mg/i	0,24	Tink			_							_				
					Oxyg	ene diss. 8	9,90	mg/i	08,9	Fichier:														
Unités d'Entrée							e Uniti	és de S	ortie															

On peut remarquer sur cet exemple que le mélange de deux légèrement calcifiantes conduit à une eau très légèrement agressive. Ceci résulte de la concavité de la courbe d'équilibre comme on peut le voir cidessous.

Courbe d'équilibre de l'eau après mélange

5-10) Concentration

Ce traitement qui simule l'évolution de l'eau dans une tour de refroidissement, permet de calculer le taux de concentration maximum limite au-delà duquel l'eau précipite spontanément le carbonate de calcium (40 Ks). En effet, les inhibiteurs de précipitation couramment utilisés dans ces installations ne peuvent empêcher la précipitation d'une eau dont le taux de saturation (SatuRatio) est supérieur à environ 40.

Or l'eau circulant dans installations de refroidissement ouvertes (où l'eau est mise en contact avec l'air) se concentre progressivement sous l'effet de l'évaporation ; d'autre part au contact prolongé avec l'air le CO_2 libre tend vers l'équilibre avec l'atmosphère. Lorsque le point figuratif de l'eau atteint la courbe d'équilibre avec l'air et que e taux de saturation vis-à-vis du carbonate de calcium atteint 40, les risques de précipitation de $CaCO_3$ deviennent très importants. Cette précipitation conduit alors à un entartrage rapide des ouvrages qui a pour conséquence une perte de rendement d'échange thermique dans la tour et le bouchage des canalisations ainsi que du garnissage de la tour.

LPLWin permet de calculer le taux de concentration correspondant à l'équilibre avec l'air et au taux de saturation de 40 (vis-à-vis de CaCO₃).

Pour ce faire, après avoir sélectionné ce traitement, la feuille « Traiter... » fait apparaître deux fenêtres de saisie permettant de choisir le SatuRatio souhaité et la pression partielle de CO_2 dans l'air.

Les valeurs données par défaut sont de 40 pour le Satu Ratio et la pression partielle de CO_2 fixée dans le menu « Options » « Calcul » :
🐍 LPLWin vers	ion 5.13				
Fichier Analyse	Visualiser ape: 0 Valeur 16,2 600 7,5 c 26,	Rapport Exem Unité °C µS/cm	t Options ple Versi en me/l 492	Résultats ΣCations 6,132 ΣAnions 6,144 Balance 0,19 HCO2 15,497	DOCX
TA TAC CO, libre Calcium Magnésium Sodium Potassium Ammonium Fer divalent Manganèse	16,5 c 0,25 4,86 0,34 0,347 0,085 1,8 0,1 0,3	of of me/l me/l me/l me/l mg/l me/l	3,312 0,25 4,86 0,34 0,347 0,085 0,099 0,1 0,3	Incolumn Incolumn HCO_2 201,305 CO_2 ⁺ 0,324 CO_4 3,555 Å 0,774 SatuRatio 1,02 Type Equilibre SatuCal 17,9 Nom:	Mitte à l'équitive Aqué d'une doue imposée Mitte à un FAC imposé Mitte à un phi mode Température imposée Décationation ou adoucisement Satur D2 remosé Mitting aon Mitting aon Mitting aon Mitting aon Mitting aon Mitting aon Mitting aon Mitting aon
Chlorure Sulfate Nitrate Nitrite Fluorure Oxygène diss.	0,789 1,302 0,241 0,1 0,4 8,00	me/l me/l me/l me/l me/l mg/l	0,789 1,302 0,241 0,1 0,4 <i>81,2</i>	Classe d'eau selon la l	Appliquer Annuler
Unités d'E	ntrée Ur	nités de S	ortie		

Une fois ces informations modifiées ou validées, il suffit de cliquer sur « Appliquer » pour lancer le calcul (ce calcul peut être assez long en fonction du taux de concentration final).

4	LPLWin vers	sion 5.13																		
F	chier Analyse	Visualiser	Rapport	Options	?															
	🕞 Eau: 1 Et				on 5 LPV		(YYY							X						
			_				🕼 Eau: 1 Et	ape: 1	LF	WIN XX	XXXXXX									
		Valeur	Unité	en me/l		Résultats		-			1 (
	Température	16,2	°C		ΣCations	6,132		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unité
	Conductivité	600	µS/cm	492	ΣAnions	6,144	Température	16,2	°C		ΣCations	8,676	me/I	pH	7,23	7,28		pH	8,86	
	рН	7,5	-		Balance	0,19	Conductivité	778	µS/cm	638	Σ Anions	8,692	me/I	Delta pH	-0,27	-0,21		Delta pH	1,37	
	тн	c 26,	of	5,2	H ₂ CO;	15,497	pH	7,49			Balance	0,19	%	∆CaCO ₃	_	-18,369	mg/l	ΔCO ₂	-14,949	mg/l
	TA		٩f		HCO;	201,306	TH	36,785	٩f	7,357	H,CO	21,931	mg/l	TAC	23,429	21,595	of	TAC	23,429	of
	TAC	16,5	of	3,312	CO3-	0,324	TA		٩f		HCO;	284,791	mg/l	H,CO;	40,662	33,075	mg/l	H,CO;	0,866	mg/l
	CO ₂ libre	c 0,25	me/l	0,25	CO ₂ Total	3,555	TAC	23,429	٩f	4,686	CO3-	0,473	mg/l	HCO;	285,269	262,832	mg/l	HCO;	263,342	mg/l
	Calcium	4,86	me/l	4,86	λ	0,774	CO ₂ libre	15,564	mg/l	0,354	CO ₂ Total	5,03	mM/I	CO3-	0,256	0,266	mg/l	CO3-	10,245	mg/l
	Magnésium	0,34	me/l	0,34	SatuRatic	1,02	Calcium	137,52	mg/l	6,876	λ	1,095		CO ₂ Total	5,337	4,847	mM/I	CO, Total	1,502	mM/I
	Sodium	0,347	me/l	0,347	Туре	Equilibre	Magnésium	5,845	mg/l	0,481	SatuRatio	1,85		∆CO₂t	0,306	-0,184	mM/I	∆CC₂t	-0,528	INM/
	Potassium	0,085	me/l	0,085	SatuCO2	17,9	Sodium	11,292	mg/l	0,491	Туре	Calcifiante	e	Calcium	137,52	130,172	mg/l	Saturatio	39,89	
	Ammonium	1,8	mg/l	0,099	Nom: Ex	emple Ver	Potassium	4,69	mg/l	0,12	SatuCO2	25,33		SatuCO2	46,96	38,2		Туре	Calcifiante	
	Fer divalent	0,1	me/l	0,1	,		Ammonium	2,547	mg/l	0,14	Trait.	Concentratio	on	a	-	1	1		-	
	Manganèse	0,3	me/l	0,3	(Fer divalent	3,961	mg/l	0,141	Réactif	Néant			Tracer	Įmpri	mer			
	Chlorure	0,789	me/l	0,789		Calculer	Manganèse	11,672	mg/l	0,424										
	Sulfate	1,302	me/l	1,302			Chlorure	39,628	mg/l	1,116	Coef.	X1,4		<u>e</u>	Traiter	Fern	ner	Calcu	al d'incertitude	is 🛛
	Nitrate	0,241	me/l	0,241	Classe de	su colon la P	Sulfate	88,42	mg/l	1,842	Pureté					i				
	Nitrite	0,1	me/l	0,1	Classe die		Nitrate	21,14	mg/l	0,341	Ch		(aàram incr	ust (CL 41)/	Co.C	Indice	e et Constani	
	Fluorure	0,4	me/l	0,4			Nitrite	6,508	mg/l	0,141	Liasse diea	iu selon la H	egiementa	ation Laure	gerein, inci	usi, (Ci. 4)/	Lac	inglee	o or constant	<u> </u>
	Oxygène diss.	8,00	mg/l	81,2	Fichier:	C:\Docum	Fluorure	9,621	mg/l	0,566										
							Oxygène diss.	8,00	mg/l	81,2	Fichier:	C:\Docum	ients and !	Settings\Pierre	Mes docu	ments\Mes	Documer	nts Profession	nels\Don	
	Unités d'E	ntrée É Un	ités de S	ortie							•									
							Unitée d'E	ntrán Í Uni	ác da S	ortia (
							Offices die	NOC ON	03 06 0	ordo										

Les caractéristiques de l'eau finale correspondent à celle de l'eau initiale concentrée mais sans échange de CO_2 avec l'air, mais on peut voir dans la zone « Equilibre avec l'atmosphère » les caractéristiques de l'eau ayant perdu le CO_2 libre en excès et le *SatuRatio* final voisin de 40.

Le graphique de la figure ci-dessous relatif à l'eau concentrée, permet de visualiser le point d'équilibre avec l'air (flèche rouge) qui est situé à l'intersection :

De la verticale passant par le point figuratif de l'eau avant perte de CO₂

De la courbe (rose) correspondant à un SatuRatio de 40

De la courbe (verte) d'équilibre avec l'air.

5-11) Satu CO2 imposé

Il peut être intéressant lorsque l'on réalise un traitement d'aération de fixer le taux de saturation par rapport au CO₂ atmosphérique (Satu CO₂) et de pouvoir connaître les caractéristiques et la composition de l'eau.

Pour ce faire, il suffit de sélectionner ce traitement dans la liste de gauche de la feuille « Traiter... » :

🔆 LPLWin vers	ion 5.13					
Fichier Analyse	Visualiser	Rapport	Options	?		
📴 Eau: 1 Et	ape: 0	Exemp	ole Versio	on 5 LPV		
	Valeur	Unité	en me/l		S Traiter	×
Température	16,2	°C		ΣCations		
Conductivité	600	µS/cm	492	ΣAnions	Traitement à appliquer : Satu CO2 :	
pН	7,5			Balance	Mise à l'équilitre	
TH	c 26,	٩f	5,2	H,CO;	Ajout d'une dose imposée	
TA		٩f		HCO;	Mise à un TAC imposé Pression CB2	
TAC	16,5	٩f	3,312	CO3"	Mise a un pH impose Termétature interseée	
CO ₂ libre	c 0,25	me/I	0,25	CO, Total	Décarbonataire injussee	
Calcium	4,86	me/l	4,86	λ	SatuRatio imposé	
Magnésium	0,34	me/l	0,34	SatuRatic	Beminéralisation	
Sodium	0,347	me/I	0,347	Туре	Mélange Conserve talien	
Potassium	0,085	me/l	0,085	SatuCO2	Satu CD2 imposé	
Ammonium	1,8	mg/l	0,099	Nom: F	Aération-Déferrisation-Ozonisation	
Fer divalent	0,1	me/l	0,1	,	Nitrification biologique	
Manganèse	0,3	me/I	0,3		Areferen	
Chlorure	0,789	me/I	0,789		Agpiquer	
Sulfate	1,302	me/l	1,302			
Nitrate	0,241	me/l	0,241	Classe d'e		
Nitrite	0,1	me/I	0,1	0.0000 0.0		
Fluorure	0,4	me/	0,4			
Oxygène diss.	8,00	mg/	81,2	Fichier:		
Unités d'E	ntrée Un	ités de S	ortie			

Deux fenêtres de saisie apparaissent :

- a) Le Satu CO2 final qui est par défaut égal à 1
- b) La pression partielle de CO₂ dans l'air qui par défaut celle qui a été fixée dans le menu « Options » « Calcul ».

Une fois l'ensemble des informations modifiées ou validées, pour lancer le calcul, il suffit de cliquer sur la touche « Appliquer » :

🔅 LPLV	Win vers	ion 5.13														
Fichier	Analyse	Visualiser	Rapport	Options	?											
fta r-	4 EA		F	1- 1/	-								<u> </u>			
	1U: I EU	ape: 0	exemt	ole versi	🕞 Eau: 1 Et	ape: 1	LF	WIN XX	XXXXXX							
		Valeur	Unité	en me/l												
Tem	erature	16.2	PC	off the		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	
Cond	luctivité	600	uS/cm	492	Température	16,2	°C		ΣCations 2 2 2	6,132	me/I	pH	7,49	7,6		
oH		7.5			Conductivité	597	µS/cm	490	ΣAnions	6,144	me/I	Delta pH	-1,24	-1,13		
TH		c 26.	of	5.2	pН	8,73			Balance	0,19	%	∆CaCO ₃		-24,904	mg/l	
TA		,	of	-/-	TH	26,	٩f	5,2	H,CO	0,866	mg/l	TAC	16,56	14,075	٩f	
TAC		16.5	of	3.312	TA	0,441	٩f	0,088	HCO;	190,517	mg/l	H.CO,	15,77	10,41	mg/l	
CO. 1	libre	c 0.25	me/l	0.25	TAC	16,56	٩f	3,312	CO3-	5,19	mg/l	HCO;	201,32	170,865	mg/l	
Calci	ium	4.86	me/l	4.86	CO ₂ libre	0,614	mg/l	0,014	CO ₂ Total	3,224	mM/I	CO3-	0,318	0,345	mg/l	
Magn	nésium	0.34	me/	0.34	Calcium	97,2	mg/l	4,86	λ	0,774		CO, Total	3,56	2,975	mM/I	
Sodiu	m	0.347	me/l	0.347	Magnésium	4,131	mg/l	0,34	SatuRatio	16,28		∆CO₂t	0,336	-0,249	mM/I	
Potas	ssium	0.085	me/	0.085	Sodium	7,981	mg/l	0,347	Туре	Calcifiant	e	Calcium	97,2	87,239	mg/l	
Amm	onium	1.8	ma/l	0.099	Potassium	3,315	mg/l	0,085	SatuCO2	1,0		SatuCO2	18,21	12,02		
Fer d	ivalent	0.1	me/l	0.1	Ammonium	1,8	mg/l	0,087	Trait.	Satu CD2 in	nposé	2	-	1	. 1	
Mano	anèse	0.3	me/	0.3	Fer divalent	2,8	mg/l	0,1	Réactif	CO2			I racer	Impr	mer	
Chlor	rure	0.789	me/l	0,789	Manganèse	8,25	mg/l	0,3	P(CO2)	0,0003						1
Sulfat	te	1.302	me/l	1.302	Chlorure	28,01	mg/l	0,789	Dose Cata CO2	-14,597 mg	1	<u>e</u>	Traiter	Ferr	ner	Calcul d'incertitudes
Nitrat	te	0.241	me/l	0.241	Sulfate	62,496	mg/l	1,302	I Satu CO2	1						
Nitrite	е	0.1	me/l	0.1	Nitrate	14,942	mg/l	0,241	Classe d'as	au celon la B	ádlament:	ation Eau in	crustante l	(CL 51/Ca C:	st	Indices et Constantes
Fluor	ure	0,4	me/l	0,4	Nitrite	4,6	mg/l	0,1	Cidaac d co	a scionna n	egioniena			(
Oxyg	pène diss.	8,00	mg/l	81,2	Fluorure	6,8	mg/l	0,4								
					Oxygène diss.	8,00	mg/l	81,2	Fichier:							
4	Unités d'Ei	ntrée Ur	ités de Si	ortie	Unités d'E	ntrée Un	tés de S	ortie								

Dans cet exemple la valeur du *Satu CO2* demandée étant de 1 (équilibre avec l'air) et la pression partielle de CO₂ indiquée étant celle qui a été fixée dans le menu « Options », le bloc de résultats de l'équilibre avec l'air situé à la droite de la fenêtre de l'étape a disparu car inutile.

Dans le cas où l'une des deux données (*Satu CO2* final ou pression partielle de CO₂) diffère de 1 pour la première et de celle qui est fixée par défaut pour la seconde, ce bloc de résultats est maintenu et donne les caractéristiques de l'eau en équilibre avec l'air (exemple : *Satu CO2* = 1 et pression partielle de CO₂ de 0,0005 bar).

Temperature Use let Cr Conduct/Nét 60.0 u/s/c C C Conduct/Nét 60.0 u/s/c F Lap C C PH 7,5 - - F Equilibres Calcur 1/2,2 C TA -	_				×				- <u> </u>				×	XXXXXX	5 LPWIN X	ion 5	le Versi	Exemp	pe: 0	Eau: 1 Eta
Conductivité 600 µ5/cm 492 Valeur Unité Pésuitats Unité Equilibres Ca Cat. Marte Dité Rando											XXXXX	WIN XXX	LP	ape: 1	🕼 Eau: 1 Et		en me/i	°C	16,2	mpérature
pH 1/5 C <thc< th=""> C C C</thc<>	ilibre Atmosphè	Equilibre Atr	Equilib	Unité	Marbre	Ca Cst.	es (Equilibres	Unité	Résultats		en me/l	Unité	Valeur			492	µS/cm	600	onductivité
IH C 2b, q q q q g d Gorductivité 598 µS/m 692 Z.Anions 6,144 me/l Detta pH -,013 me/l ACO. -,033 me/l ACO. -,044 me/l Detta pH -,012 .0,93 me/l ACO. -,040 ACO.	8,73	pH 8,7	pH		7,59	7,49	7	pH	me/I	6,132	ΣCations		°C	16,2	Température				7,5	1
IA Y Pf 8,52 Balance 0,19 % ACC_O -2,1316 mg/l ACO0,00 CO_Libre 0,25 me/l 0,25 me/l 0,25 mg/l TAC 16,56 14,433 ff ACO_O -2,1316 mg/l TAC 16,56 14,433 ff TAC 16,56 16,56 16,56 14,433 ff TAC 16,56 16,56 16,56 16,56 16,56 0,27 0,18 0,34 mg/l 0,34 mg/l 0,304 0,021 10,56 0,138 0,34 mg/l 1,302 0,21 15,56 0,18 0,34 mg/l 0,027 0,318 0,34 mg/l 0,227 0,318 0,34 Mg/l ACO_L 0,02 10,013	a pH 0,21	Delta pH 0,2	Delta		-0,93	-1,02	H -	Delta pH	me/I	6,144	ΣAnions	490	µS/cm	598	Conductivité	1 8	5,2	**	: 26,	1
IAC 10,3 4 3,312 5 TH 25, eff 5,22 HCC_ 1,442 mg/l TAC 16,56 14,433 47 Calcium 0,25 me/l 0,265 eff 0,205 eff 0,041 me/l 1,5,77 11,098 mg/l HCO_2 19/3,789 mg/l HCO_2 19/3,58 mg/l 0,025 5,19 mg/l 0,025 5,19 mg/l HCO_2 19/3,58 mg/l 0,02 5,19 mg/l 0,02 5,19 mg/l 0,02 5,19 mg/l 0,02 5,19 mg/l 0,02 5,10 Ma/D 0,02 <td>O₂ -0,409</td> <td>Δ CO₂ -0/</td> <td>A CO</td> <td>mg/l</td> <td>-21,316</td> <td></td> <td>),</td> <td>ACaCO,</td> <td>%</td> <td>0,19</td> <td>Balance</td> <td></td> <td></td> <td>8,52</td> <td>pН</td> <td>- 8</td> <td></td> <td>۳ در</td> <td></td> <td>1</td>	O ₂ -0,409	Δ CO ₂ -0/	A CO	mg/l	-21,316) ,	ACaCO,	%	0,19	Balance			8,52	pН	- 8		۳ در		1
Od., Bote Co., 25 me/h Q.25 FA O,005 ef O,011 HOC 194,789 mg/h HCO2 11,088 mg/h HCO2 10,323 17,088 mg/h HCO2 10,323 10,	16,56	TAC 16,	TAC	٩f	14,433	16,56	1	TAC	mg/l	1,442	H,CO;	5,2	٩f	26,	тн	- 6	3,312	мт 	16,5	NC
Laloum 1,900 me/l 1,900 me/l 1,900 me/l 1,900 201,322 175,253 mg/l 1600_1 100,5 100,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,318 0,321 175,253 mg/l 0C0_7 15,19 Potassium 0,085 me/l 0,037 mg/l 0,1318 0,318 0,318 0,318 0,318 0,318 0,318 0,324 Mg/logital 3,224 Ammonium 1,8 mg/l 0,099 0,318 0,318 0,348 0,318 0,348 0,241 420_2 1,023 17,24 420_2 1,023 17,24 420_2 1,023 17,24 420_2 1,023 17,24 420_2 1,24 420_2 1,24 420_2 1,24 420_2 1,023 17,253 mg/l 1,223 420_2 1,24 <	O,866	H_CO; 0,84	H ₂ CO ₃	mg/l	11,098	15,77	1	H,CO	mg/l	194,789	HCO;	0,041	٩f	0,205	TA	1 8	0,25	me/i	0,25	D ₂ libre
National Open method	0; 190,517	HCO; 190	HCO;	mg/l	175,253	201,32		HCO;	mg/l	3,258	CO3-	3,312	٩f	16,56	TAC	1 1	4,85	me/i	4,85	licium
Jobulin 0,947 mine/l 0,947 mine/l 0,947 mine/l 0,947 mine/l 0,947 CO_Total 3,56 3,058 m/M Jacobili CO_Total 3,264 Jacobili Co_Total 3,56 3,058 m/M Jacobili Jacobili Co_Total 3,56 3,058 m/M Jacobili Jacobi	5,19	CO3- 5,1	CO3-	mg/l	0,34	0,318	0	CO2-	mM/I	3,271	CO ₂ Total	0,023	mg/l	1,023	CO ₂ libre	18	0,34	me/i	0,34	agnesium
Consisting 0,083 me/l 0,093 Magnetse 4,131 mg/l 0,34 Saturatio 10,23 Calcinate	Total 3,224	CO ₂ Total 3,2	CO ₂ Te	mM/I	3,058	3,56	tal 3	CO ₂ Total		0,774	λ	4,86	mg/l	97,2	Calcium	1 8	0,095	me/i	0,095	dum
Naminality L/s mg/l 0,000 mg/l 0,000 mg/l 0,000 mg/l 0,000 mg/l 0,200 10,200 <	0,047	ΔCO ₂ t -0,0	∆CO ₂ t	mM/I	-0,213	0,289		∆CO₂t		10,23	SatuRatio	0,34	mg/l	4,131	Magnésium	4	0,085	me/i	1.0	Rassium
Browner 0,1 me/l 0,241 me/l 0,3 me/l 0,4 me/l 0,241 me/l 0,241 me/l 0,241 me/l 0,241 me/l 0,241 me/l 0,4 me/l 0,4 me/l 0,4 2,50 mg/l 0,789 Dose -12524 mg/l Me/l Im/line Calcul d'more	uratio 16,28	Saturatio 16,	Satura	mg/l	88,673	97,2	1 9	Calcium		Calcifiante	Туре	0,347	mg/l	7,981	Sodium	<u>۱</u>	0,099	mg/i	1,0	nmonium r divolont
Ammonium 1,8 mg/l 0,789 me/l 0,789 Mitrate 0,1 Trate 28,010 mg/l 0,39 Dose 12,524 mg/l Trate Fermer Calcul dimee Nitrate 0,4 me/l 0,4 me/l 0,4 me/l 0,4 me/l 0,4 Trate 12,924 mg/l 1,302 Dose 12,524 mg/l Irater Fermer Calcul dimee Sourgene dess 8,00 mg/l 6,2496 mg/l 1,302 1 Irater Fermer Calcul dimee Nitrate 14,942 mg/l 0,241 Classe dreau selon la Réglementation Eau incrustante (Cl. 5)/Ca Cst Indices et Co	e Calcifiante	Type Cal	Туре		12,82	18,21	2	SatuCO2		1,66	SatuCO2	0,085	mg/l	3,315	Potassium		0,1	med	0,1	
Substrate 0,745 me/l 0,302 me/l 1,302 <				1	ĺ			2	posé	Satu CO2 im	Trait.	0,092	mg/l	1,8	Ammonium		0,5	me/	0,3	lorure
Justice 0,241 me/l 0,241 Manganetae 0,240 0,241 Manganetae 0,240 Manganetae 1,302 1302				mer	Impri	I racer	1			CO2	Réactif	0,1	mg/l	2,8	Fer divalent		1 202	med	1 302	lifate
Chlorure 28,01 mg/l 0,789 Doce -12,524 mg/l Iraiter Fgmmer Calcul drive Nitrate 0,4 mg/l 0,4 mg/l 0,4 mg/l 1,302 Satista 62,904 1 Galcul drive Calcul drive C							-			0,0005	P(C02)	0,3	mg/l	8,25	Manganèse		0.241	mel	0.241	Inate
Sufface 62,496 mg/l 1,302 Safface Safface <thsafface< th=""> <thsafface< th=""> <thsafface< td=""><td>Calcul d'incertitue</td><td>Calcul d'in</td><td></td><td>ner</td><td>F<u>e</u>rr</td><td>Traiter</td><td>I</td><td></td><td></td><td>-12,524 mg/</td><td>Dose</td><td>0,789</td><td>mg/l</td><td>28,01</td><td>Chlorure</td><td></td><td>0.1</td><td>mel</td><td>0.1</td><td>rite</td></thsafface<></thsafface<></thsafface<>	Calcul d'incertitue	Calcul d'in		ner	F <u>e</u> rr	Traiter	I			-12,524 mg/	Dose	0,789	mg/l	28,01	Chlorure		0.1	mel	0.1	rite
Dorgene des. 8,00 mg/ 81.2 Nitrate 14,942 mg/ 0.241 Classe d'eau selon la Réglementation Eau incrustante (CL 5)/Ca Cst Inglices et Co				i			-			1	[Salu CO2	1,302	mg/l	62,496	Sulfate	1 1	0.4	me/	0.4	Incure
Nitrite 4.6 mg/ 0.1	Indices et Constar	Indices et (Ir	ł	l. 5)/Ca C:	rustante (I	au incr	ation Eaui	alementa	au selon la Br	Classe d'ea	0,241	mg/l	14,942	Nitrate	1 1	81.2	mal	8.00	cvorène diss
	-							1				0,1	mg/l	4,6	Nitrite		/-		10/00	9 2010 0001
Fluorure 6,8 mg/ 0,4												0,4	mg/l	6,8	Fluorure		e 1			
Unites d'Entree Unites de Sortie Oxygène diss. 8,00 mg/l 81,2 Fichier:											Fichier:	81,2	mg/l	8,00	Oxygène diss.		rtie	ites de So	tree Un	Unites d'Er

5-12) Aération-Déferrisation

5-12-1) Rappels théoriques

Le fer divalent est souvent présent dans les eaux souterraines dépourvues d'oxygène dissous. Contrairement au fer trivalent qui est entièrement sous la forme d'hydroxyde solide, il est ionisé et pèse donc dans la balance ionique. Sa présence dans l'eau distribuée n'est pas souhaitable en raison de la couleur jaune qu'il lui confère dès qu'il s'oxyde notamment lorsque l'eau est en contact de l'air.

La déferrisation a pour but d'oxyder le fer divalent en fer trivalent, par l'oxygène pour qu'il précipite sous forme d'hydroxyde. La réaction chimique est la suivante :

 $4 \text{ Fe}^{2+} + \text{O}_2 + 10 \text{ H}_2\text{O} \Rightarrow 4 \text{ Fe}(\text{OH})_3 + 8 \text{ H}^+ \quad (1)$

Il suffit alors de séparer cet hydroxyde par une simple filtration.

Pour réaliser cette oxydation, on utilise le plus souvent l'oxygène de l'air et parfois l'oxygène pur. Le recours à l'ozone est rendu nécessaire lorsque l'eau contient aussi du manganèse en grande quantité, le manganèse n'étant pas oxydé par l'oxygène de l'air au pH des eaux naturelles.

Dans le cas le plus fréquent d'utilisation de l'air, on peut dissoudre l'oxygène selon deux voies :

- a) Par injection d'une petite quantité d'air sous pression; dans ce cas seules les concentrations en oxygène dissous et en azote sont modifiées;
- b) Par contact plus ou moins prolongé avec l'air ; ceci peut être obtenu par barbotage d'air dans l'eau ou par pulvérisation de l'eau dans l'air ; dans ce cas, les concentrations en oxygène et en azote sont modifiées ainsi que celle de CO₂ libre.

Remarque :

Il convient enfin de rappeler que la vitesse d'oxydation du fer divalent par l'oxygène dissous est fonction notamment du pH. Elle est très lente lorsque le pH est inférieur à environ 6,5. Ainsi, lorsque le pH de l'eau est inférieur à cette valeur, il est souhaitable d'aérer fortement l'eau afin d'en chasser une part importante de CO_2 libre pour élever le pH ou de recourir à une oxydation biologique.

5-12-2) L'eau contient du fer divalent mais pas de manganèse

Par exemple, l'eau 1 contient 0,1 me/l de fer (2,8 mg/l) et présente un pH de 7 :

🕼 Eau: 1 Et	ape: O	L	ули хх	XXXXXX									
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unit
Température	16,2	∘⊂		Σ Cations	5,738	me/l	pН	7,49	7,55		pН	8,73	
Conductivité	c 579	µS/cm	475	Σ Anions	5,854	me/l	Delta pH	-0,51	-0,45		Delta pH	0,73	
pH	8			Balance	2,02	%	ACaCO,		-13,854	mg/l	A CO _x	-2,831	mg/
тн	c 26,	٩f	5,2	H,CO'	4,855	mg/l	TAC	16,5	15,115	of	TAC	16,5	٩f
TA		٩f		HCO;	199,212	mg/l	H,CO [*]	15,892	12,714	mg/l	H,CO ₂	0,866	mg/l
TAC	16,5	٩f	3,3	CO3-	1,007	mg/l	HCO;	200,655	183,723	mg/l	HCO;	190,582	mg/l
CO ₂ libre	c 3,445	mg/l	0,078	CO ₂ Total	3,361	mM/l	CO;-	0,312	0,326	mg/l	CO3-	5,169	mg/l
Calcium	97,2	mg/l	4,86	λ	0,78		CO ₂ Total	3,551	3,222	mM/l	CO ₂ Total	3,224	mM/I
Magnésium	4,131	mg/l	0,34	SatuRatic	3,23		∆CO _z t	0,19	-0,139	mM/l	∆CO₂t	-0,136	mM/I
Sodium	7,981	mg/l	0,347	Туре	Calcifiante	2	Calcium	97,2	91,659	mg/l	Saturatio	16,52	_
Potassium	3,315	mg/l	0,085	SatuCO2	5,61		SatuCO2	18,35	14,68		Туре	Calcifiante	
Ammonium	0,1	mail	0,005	Nom:			è 🗌	T	Inni		Maria da		
er divalent	2,8	mg/l	0,1	í í				Tacel	Tubu	mer	Mode de	dosage du l	I.A.U.
Manganèse	0	mg/l					a 1 (***		7				
Chlorure	20	mg/l	0,565		Calculer		abe	<u>T</u> raiter	Ferr	ner	Calcu	il d'incertitud	es
Sunate	60	mag	1,25										
Nitrate	14,942	mg/l	0,241	Classe d'e	au selon la R	églement	ation Eau in	crustante (I	Cl. 5)/Ca Ca	st	Indice	s et Constan	tes
INITITE	4,6	mg/i	0,1										
Fluorurë	6,8	mg/i	0,4										

Lorsque le traitement d'Aération-Deferrisation-Ozonisation est sélectionné, une fenêtre d'options « Type de traitement » apparaît et donne le choix entre les simulations :

- a) D'une injection d'air en réacteur clos (option1) qui n'entraîne pas de variation du carbone minéral total (CO₂ total),
- b) D'un contact prolongé avec l'air par barbotage d'air ou pulvérisation de l'eau (option 2) qui permet un échange de CO₂ avec l'air,

La possibilité d'injection d'air ozonisé est ici désactivée compte tenu de l'absence de manganèse et du pH élevé de l'eau.

	1.1										1 (=		
	Valcur	Unite	jen mevi	T Outlines	resultat	s Unite	Equilibres	Calust.	Marore	Unite	Equilibre	Atmosphere Unite	
emperature	10.2	e.	175	2 Gations	5,738	meji	pri	7,49	7,55		pet -	0,73	
onductivite	c 5/9	heicu	4/5	2 Anons	5,054	and the second second	in ena ner	- Internet	111 45				
2F1	0	06	E 0.	balance	2,02	BI Traite	er						
	C 20,	-1	5,4	100	4,005								
TAC .	14.5	-1	2.2	HLO.	199,212	Traiter	unità annimi						
AC Iber	10,5	1	3,3	00, Tetel	1,007	Liditer	Press or appliqu	61.	177	-Tu	na da tražame	and a	
Solational Calations	C 3,445	mg/l	0,078	oog lotal	0,301	Mise a	requilDre d'une dose im	nosée	^	19	 Injection d' 	on munàne (ou d'air) en Réacteur clor	Concentration
Januaria i Januaria	97,2	ing/i	9,00	A Castro Datia	0,76	Mise a	a un TAC impi	osé		,	- mechonia	onygone (ou d'air) of Mediceal Clos	finale de
viagnesium	9,131	mgyi	0,39	Saturatio	3,23	Mise à	un pH impos	é		0	Pulvérisation	on ou barbotage d'air	l'oxygène :
soaium	7,981	mgyi	0,397	Type	Calcina	Temp	érature impos	ée .		0	Injection d		afi 100
otassium	3,315	mgyi	0,085	ISatuco2	19,61	Decar ColuD	bonatation ou	adoucisse	ment				
Ammonium	0,1	mgyi	0,005	Nom:		Bemin	etalisation						OTIKOS
erdMalent	2,0	mgu	0,1			Mélan	ge						⊂ mg/l
vanganese	0	mgyi				Conce	entration						
hiorure	20	mgn	0,563			Satu	CO2 imposé		-				
sulfate	60	mgn	1,25			Nitrific	ation biologic	n-Uzonisat Ne	on 🗸				
viriate	14,942	mg/i	0,241	Classe d'ea	u selon la	Tround	alon blogg						
NETRO	9,6	mg/i	0,1		_	, A	ppliquer	Ar	nuler				
luorure	6,8	mg/l	0,4										
Dxygana diss.	0,00	[mg/i	0,0	Fichier:		-	1						

Un message de conseil apparaît en bas de la fenêtre « Traiter... », permettant d'orienter le choix du traitement en fonction des concentrations de fer divalent et de manganèse.

Les conséquences sur le CO_2 de ces traitements, ou les possibilités de simulation de traitements avec l'ozone, sont rappelées dans un message apparaissant sous le pointeur de la souris lors que celui-ci passe sur ces boutons :

S Traiter	Traiter
Isalement à appliquer : Mise à l'équilibre Aloud d'une doise imposé Mise à un plaimposé Pas d'échange de CO2 avec l'air (CO2 Total constant) Pas d'échange de CO2 avec l'air (CO2 Total constant) Décastion ataliano nu adoucissement Reminétaise Salu Ratio imposé Ménage Concentiolon Concentiolon Reminétaise Décastion ataliano Mélonge Concentiolon Concentiolon Reminétaise Concentiolon Reminétaise Ageliquer Concentiolon Reminétaise Ageliquer Concentiolon Reminétaise <td>Tretement à appliquer : Image à faquilite Type de tralement Aput d'une doe imposée Injection d'oxygine (ou d'ai) en Réacteur clos Image à no phil mposé Publicitation ou babolage d'ai Decabonatation ou adoutisement Publicitation d'ai en réacteur clos Sauf allo imposé Publicitation ou adoutisement Reministration Sauf allo imposé Concentration Tempédule intervision ou adoutisement Sauf allo imposé mg/it Concentration Sauf CD2 imposé Malange Concentration Concentration Sauf CD2 imposé Malange Appliquer Applique Annuder Vinitication biologique Annuder Vinitication Cette eau contenant du Fer II et peu ou pas de Manganèse (Mn < Fe/2), la lère étape de tratement pourait être</td> Vinitication Cette eau contenant du Fer II et peu ou pas de Manganèse (Mn < Fe/2), la lère étape de tratement pourait être	Tretement à appliquer : Image à faquilite Type de tralement Aput d'une doe imposée Injection d'oxygine (ou d'ai) en Réacteur clos Image à no phil mposé Publicitation ou babolage d'ai Decabonatation ou adoutisement Publicitation d'ai en réacteur clos Sauf allo imposé Publicitation ou adoutisement Reministration Sauf allo imposé Concentration Tempédule intervision ou adoutisement Sauf allo imposé mg/it Concentration Sauf CD2 imposé Malange Concentration Concentration Sauf CD2 imposé Malange Appliquer Applique Annuder Vinitication biologique Annuder Vinitication Cette eau contenant du Fer II et peu ou pas de Manganèse (Mn < Fe/2), la lère étape de tratement pourait être

Enfin, une fenêtre permet de préciser la concentration finale de l'oxygène dissous après les réactions. Un bloc d'unités permet de choisir entre l'expression de cette concentration soit en mg/l soit en pourcentage de la saturation. La valeur affichée par défaut est 100 % de la saturation. Si l'on opte pour les mg/l, la valeur affichée s'effacera dans le cas où celle-ci est supérieure à 30 (valeur maximale de la concentration en mg/l de l'oxygène telle que définie dans le tableau donné au chapitre « Feuille de saisie ». si l'on revient au pourcentage de saturation, la valeur figurant dans la fenêtre de saisie, sera remplacée par '100' si elle était inférieure à 30. Ces dispositions permettent de limiter les erreurs de saisie sachant que si la valeur n'a pas été saisie ou a été effacée ou bien est supérieure à 30 mg/l ou 300 %, un message d'erreur apparaîtra.

1) Injection d'air en réacteur clos

Si l'on choisit cette option, il ne reste plus qu'à cliquer sur le bouton appliquer pour effectuer le calcul :

🙆 LPLWin ve	ersion 5.	7																		
Fichier Analys	e Visualise	r Ra	pport	Options	?															
📴 Eau: 1	Etape:	0	LP	win xxx	xxxxx		🕞 Eau: 1 Ete	ape: 1	L		xxxxx									
	Vale	ur	Unité	en me/l		Résultats		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphere	e Unité
Températu	re 16,2		°C		∑ Catione	5,738	Température	16,2	°C		ΣCations	5,638	me/l	pН	7,5	7,53		pН	8,72	
Conductivi	té (579		µS/cm	475	ΣAnions	5,854	Conductivité	c 570	po/cm	468	ΣAnions	5,754	me/l	Delta pH	-0,16	-0,13		Delta pH	1,06	
pH	8				Balance	2,02	pН	7,66			Balance	2,05	%	ACaCO,		-5,513	mg/l	∆ CO _z	-6,801	mg/l
TH	26.		٩f	5,2	H,CO	4,855	TH	26,	٥f	5,2	H,CO	10,449	mg/l	TAC	16,	15,449	٩f	TAC	16,	of
TA			4		HCO:	199,212	ТА		٩f		HCO;	194,28	mg/l	HCO;	15,005	13,731	mg/l	HCO;	0,866	mg/l
TAC	16,5		٩f	3,3	CO;-	1,007	TAC	16,	٩f	3,2	CO3-	0,444	mg/l	HCO;	194,558	187,82	mg/l	HCO;	185,087	mg/l
CO ₂ libre	c 3,44	5	mg/l	0,078	CO ₂ Total	3,361	CO ₂ libre	7,415	mg/l	0,169	CO ₂ Total	3,361	mM/i	CO;-	0,31	0,315	mg/l	CO;-	4,868	mg/l
Calcium	97,2		mg/l	4,86	λ	0,78	Calcium	97,2	mg/l	4,86	λ	0,83		CO ₂ Total	3,437	3,306	mM/i	CO ₂ Total	3,129	mM/I
Magnésium	1 4,13	1	mg/l	0,34	SatuRatio	3,23	Magnésium	4,131	mg/l	0,34	SatuRatio	1,43		∆CO _z t	0,076	-0,055	mM/I	∆CO₂t	-0,232	mM/I
Sodium	7,98	1	mg/l	0,347	Туре	Calcifian	Sodium	7,981	mg/l	0,347	Туре	Calcifiante	2	Calcium	97,2	94,995	mg/l	Saturatio	15,65	
Potassium	3,31	5	mg/i	0,000	CaldGOZ	5,61	Potaceium	3,315	mg/l	0,085	SatuCO2	12,07		SatuCO2	17,33	15,86		Туре	Calcitiante	
Ammonium	0,1		mg/i	0,005	Nom:		Ammonium	0,1	mg/l	0,005	Trait.	Aération-Dé	ferri.	<u>ک</u>	Tracer	Imp	imer			
Herdwaten	t 2,8		mg/i	0,1			Ferdivalent		mg/l		Réactif	Air (02)			Tacer	Tub	inici			
Wanganese			mg/i	-		o 1 1	Manganese	0.0	mg/i		Dose 02	10.24 mg/l		<u>a</u>						1
Chiorure	20		mg/i ma/l	1.05		Salealei	Ghiofure	20,	mg/i	0,563	0036 02	10,24 mg/1		abe	Iraiter	⊢ <u>e</u> n	mer			es
Alterte	14.0	12	mgyr ma/l	1,25			Sunate	60,	mg/i	1,25										
Nitale	14,9	†∠	mg/i mg/i	0,241	Classe d'ea	iu selon la f	NITALE	14,942	mg/i	0,241	Classe d'ea	au selon la R	églementa	ation Eauà	l'équilibre (I	Cl. 1)/Ca C	st	Indice	es et Constant	es
Fuerura	2.0		mg/i ma/l	0,1				4,0	mg/i	0,1										
Orovañoe d	iee 0,0	_	mg/i mail	0,4	Fichier		Pluolute Otourána dina	0,0	mg/l	0,4 100.0	Fishior									
Chygened	188. J 10,00	-	ngn	0,0	Tionior.	1	Oxygene uss.	9,04	Ing/i	100,0	Fichiel.	1								
Unités	s d'Entrée	Unité	is de So	ortie			Unités d'Er	ntrée Uni	tés de S	ortie										

Le fer a été éliminé entraînant un abaissement du pH.

Si le pH de l'eau est inférieur à 6,8, le message de conseil mentionne que la vitesse d'oxydation est lente et que le fer ne précipitera que très lentement si l'on ne procède pas à une aération ou une injection préalable d'un réactif basique permettant d'élever le pH :

2) Pulvérisation ou barbotage d'air

Si l'on choisit cette option, une deuxième fenêtre d'options « Caractéristiques finales » apparaît :

🔆 LPLWin versi	on 5.17			
Fichier Analyse \	/isualiser R	apport Options	?	
📴 Eau: 1 Et	ape: O	LPWIN X)	(XXXXXX	🕅 Traiter 🗙
Température Conductivité pH TH TA TAC CO ₂ libre Calcium Magnés lum Sodium Potassium Anmonium Fer divalent Manarése	Valeur 16,2 c 578 7 c 26, 16,5 c 34,822 97,2 4,131 7,981 3,315 0,1 2,8 0	Unité en me/l ♥C 474 ♥f 474 ♥f 5,2 ♥f 3,3 mg/l 0,791 mg/l 0,791 mg/l 0,347 mg/l 0,085 mg/l 0,006 mg/l 0,006	Res 2 Cations 5,785 Z Anions 5,855 Batance 2,02 49,00 HOO, ⁺ 201,1 Coo ⁺ _2 0,10 OO, ⁺ 0,01 4,09 A A 0,78 SatuRatio 0,33 Type Agre SatuRatio 0,33 Type Agre SatuRatio 0,33 Type Agre SatuRation 0,33	Iraitement à appliquer : Mise à Iréquitire dose imposée Mise à un Primosé Température imposée Décatonation ou daucissement SalutPaio imposé Ménage Concentration SalutDatio mous Ménage Concentration Salut CO2 imposé Ménica du prévision Ménage Concentration Salut CO2 imposé Ménica du prévision Ménica du prévision Appliquer Appliquer Appliquer
Chlorure Sulfate Nitrate Nitrite Fluorure Oxygène diss. Unités d'E	20 60 14,942 4,6 6,8 0,00	mg/l 0,563 mg/l 1,25 mg/l 0,241 mg/l 0,1 mg/l 0,4 mg/l <i>0,4</i>	Calc. Classe d'eau sek Fichier:	Le pH doit être compris entre le pH après éventuelle précipitation du Fell (ou Mn) (6,94) et le pH après contact avec l'air (9,72)

Elle propose trois possibilités :

- a) On souhaite atteindre un pH donné
- b) On souhaite mettre l'eau à l'équilibre calco-carbonique
- c) On souhaite aérer très fortement pour tendre vers l'équilibre avec l'air

1^{er} cas : On souhaite fixer le pH final

Il convient de saisir la valeur de pH souhaitée dans fenêtre « pH final », mais ce pH doit être compris entre la valeur du pH après précipitation du fer sans échange de CO₂ (6,94 dans le cas de l'exemple présenté) et celle de l'eau en équilibre avec l'air (8,72 pour cet exemple) qui ne sont pas connues avec précision par l'utilisateur. Aussi le message d'alerte situé en bas de la fenêtre « Traiter... », précise ces limites (voir figure ci-dessus). Si le pH saisi n'est pas compris dans cette fourchette, LPLWin renvoie un message d'erreur.

Il suffit de saisir le pH souhaité (7,3 par exemple) ainsi que la concentration finale de l'oxygène dissous (8 mg/l par exemple) puis de cliquer sur le bouton « Appliquer » pour effectuer les calculs :

\left LPL	Win versi	on 5.17																		
Fichier	Analyse V	isualiser F	Rapport	Options	?															
fa	Faur 1 Fta	ine: O	11		xxxxxx		ffe Faur 1 Ft	apo: 1			*****									
		sper o					Gr Lau. T La	ape. T	L)	- 10 10 AA	~~~~								<u> </u>	
		Valeur	Unité	en me/l		Résulta		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unité
Te	mpérature	16,2	∘⊂		ΣCations	5,738	Température	16,2	°C		ΣCations	5,638	me/l	pН	7,5	7,46		pН	8,72	
Co	nductivité	c 578	µS/cm	474	ΣAnions	5,854	Conductivité	c 570	µS/cm	468	ΣAnions	5,754	me/l	Delta pH	0,2	0,16		Delta pH	1,42	
pH		7			Balance	2,02	pН	7,3			Balance	2,05	%	ACaCO,		10,387	mg/l	A CO.	-16,364	mg/l
TH		с 26,	٩f	5,2	H ₂ CO ₂	49,067	тн	26,	٩f	5,2	H,CO ₂	23,924	mg/l	TAC	16,	17,039	٥f	TAC	16,	of
TA			of		HCO;	201,096	TA		٩f		HCO;	194,798	mg/l	HCO;	15,005	17,599	mg/l	HCO,	0,866	mg/l
TA	.C	16,5	of	3,3	CO;-	0,101	TAC	16,	٩f	3,2	CO3-	0,195	mg/l	HCO;	194,558	207,25	mg/l	HCO;	185,087	mg/l
), libre	c 34,822	mg/l	0,791	CO ₂ Total	4,09	CO ₂ libre	16,978	mg/l	0,386	CO _z Total	3,583	mM/l	CO3-	0,31	0,301	mg/l	CO3-	4,868	mg/l
Ca	loium	97,2	mg/l	4,86	λ	0,78	Calcium	97,2	mg/l	4,86	λ	0,83		CO ₂ Total	3,437	3,686	mM/I	CO ₂ Total	3,129	mM/I
Ma	gnésium 	4,131	mg/l	0,34	SatuRatio	0,33	Magnésium	4,131	mg/l	0,34	SatuRatic	0,63		∆CO _z t	-0,146	0,104	mM/I	∆CO₂t	-0,453	mM/I
50	dium	7,981	mg/l	0,347	Туре	Agress	Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,2	101,355	mg/l	Saturatio	15,65	
PO	tassium	3,315	mg/i	0,085	ISatuCO2	55,67	Potassium	3,315	mg/l	0,085	SatuCO2	27,63		SatuCO2	17,33	20,33		Туре	Calcitiante	
An	nmonium	0,1	mg/i	0,006	Nom:		Ammonium	0,1	mg/l	0,006	Trait.	Aération-Dé	ferri.	<u>ک</u>	Tracer	Impr	imer			
rei Mar		2,0	mg/l	0,1			Ferdivalent		mg/l		Réactif	Air (U2 + CU	12)		ridoo					
Ch	logura	20	mg/l	0 542		Calcula	Manganese		mg/i	0.540	Dose CO2	-22 317 mg/i	4	a l	÷	1				
Sul	Inte	60	mail	1.25		Laicule	Childrune	20,	mg/i	0,563	0000002	zz,orring/			Iraiter	Fen	mer	Laicu		15
Nit	rate	14 942	mail	0.241			Suitate	14.042	mg/i	1,25										
Nit	rite	4.6	mail	0.1	Classe d'e	au selon	Nitrita	4.6	mg/l	0,271	Classe d'e	au selon la R	églementa	ation Eau lé	gèrem, agri	ess. (Cl. 2)/	'Ca C	Indice	s et Constant	.es
Bu	onire	6.8	mail	0.4			Fluorura	6.8	mail	0,1				,						
Ox	ygène diss.	0,00	mg/l	0,0	Fichier:		Oxygène diss.	8,00	mg/l	81,3	Fichier:									
	Unités d'El	ntrée Un	ités de S	ortie			Unités d'Er	ntrée Uni	ités de S	ortie										

On notera que dans la fenêtre bleue (Trait.) les doses d'oxygène nécessaire à l'oxydation et à atteindre la concentration souhaitée, et de CO_2 éliminé pour atteindre le pH souhaité sont indiquées.

2^{ème} cas : On souhaite mettre l'eau à l'équilibre calcocarbonique

Il suffit alors de choisir l'option correspondante et de renseigner la concentration finale de l'oxygène dissous, puis de cliquer sur le bouton « Appliquer » pour effectuer le calcul :

🕼 Eau:	1 Eta	ipe: O	LF	рмін XX	xxx	xx	- C C	X
		Valeur	Unité	en me/l	1 -	Traiter		
Tempéra	ture	16,2	∘⊂					
Conducti	vité	c 578	µS/cm	474		Traitement à appliquer :		
pH		7				Mise à l'équilibre	Type de traitement	
TH		c 26,	٥f	5,2		Ajout d'une dose imposée	Injection d'oxygène (ou d'air) en Réacteur clos	Concentration
TA			٩f			Mise à un TAC imposé	C. Bulatination and balance white	l'ovugène :
TAC		16,5	٥f	3,3		Mise a un pH imposé	Puiverisation ou barbotage d'air	Toxygene .
CO ₂ libre		: 34,822	mg/l	0,791		Décarbonatation ou adoucissement	 C Injection d'air ozoné (sans modification du CO2 Total) 	18
Calcium		97,2	mg/l	4,86		SatuRatio imposé		Unités
Magnési	ım	4,131	mg/l	0,34		Reminéralisation		G mad
Sodium		7,981	mg/l	0,347		Mélange		in marie
Potassiu	m	3,315	mg/l	0,085		Concentration Satu CO2 imposé		🔿 % Satu.
Ammoni	m	0,1	mg/l	0,006		Aération-Déferrisation-Ozonisation		
Fer divale	ent	2,8	mg/l	0,1		Nitrification biologique 🛛 💌		
Manganè	se	0	mg/l					
Chlorure		20	mg/l	0,563		Appliquer <u>A</u> nnuler		
Sulfate		60	mg/l	1,25				
Nitrate		14,942	mg/l	0,241		Cette eau contenant du Fer II et peu	ou pas de Manganèse (Mn < Fe/2), la 1ère étape de traitem	ent pourrait être
Nitrite		4,6	mg/l	0,1		l'aération.		
Fluorure		6,8	mg/l	0,4				
Oxygène	diss.	0,00	mg/l	0,0				
Lo Aygone		10,00	10.90					

🙆 LPLWin vers	ion 5.17																		
Fichier Analyse	Visualiser A	Rapport	Options	?															
📴 Eau: 1 E	tape: O	LF	р ин ххх	xxxxx		📴 Eau: 1 Et	ape: 1	LF		xxxxx									
	Valeur	Unité	en me/l		Résu		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unité
Température	16,2	∘⊂		ΣCations	5,738	Température	16,2	°C		ΣCations	5,638	me/l	pН	7,5	7,34		pН	8,72	
Conductivité	c 578	µS/cm	474	ΣAnions	5,854	Conductivité	c 570	µS/cm	467	ΣAnions	5,754	me/l	Delta pH	0,57	0,4		Delta pH	1,78	
pH	7			Balance	2,02	pН	6,94			Balance	2,05	%	ACaCO,		44,341	mg/l	A CO.	-38,594	mg/l
TH	c 26,	٩f	5,2	H,CO	49,06	TH	26,	٩f	5,2	H,CO'	55,248	mg/l	TAC	16,	20,434	٥f	TAC	16,	٩f
TA		٩f		HCO;	201,0	TA		٩f		HCO;	195,031	mg/l	HCO2	15,005	27,965	mg/l	H,CO	0,866	mg/l
TAC	16,5	٩f	3,3	CO3-	0,101	TAC	16,	٩f	3,2	CO3-	0,085	mg/l	HCO;	194,558	248,73	mg/l	HCO;	185,087	mg/l
CO ₂ libre	c 34,822	mg/l	0,791	CO ₂ Total	4,09	CO ₂ libre	39,208	mg/l	0,891	CO ₂ Total	4,09	mM/I	CO3-	0,31	0,275	mg/l	CO3-	4,868	mg/l
Calcium	97,2	mg/l	4,86	λ	0,78	Calcium	97,2	mg/l	4,86	λ	0,83		CO ₂ Total	3,437	4,533	mM/I	CO ₂ Total	3,129	mM/I
Magnésium	4,131	mg/l	0,34	SatuRatic	0,33	Magnésium	4,131	mg/l	0,34	SatuRatio	0,27		ACO _s t	-0,653	0,443	mM/I	∆CO₂t	-0,96	mM/I
Sodium	7,981	mg/l	0,347	Туре	Agre	Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,2	114,936	mg/l	Saturatio	15,65	
Potassium	3,315	mg/l	0,085	SatuCO2	56,67	Potassium	3,315	mg/l	0,085	SatuCO2	63,81		SatuCO2	17,33	32,3		Туре	Calcifiante	
Ammonium	0,1	mg/l	0,006	Nom:		Ammonium	0,1	mg/l	0,006	Trait.	Aération-Dé	ferri.	<u>ک</u>	T	- Lune				
Fer divalent	2,8	mg/l	0,1	,		Fer divalent		mg/l		Réactif	Air (02)			I facer	Impr	imer			
Manganèse	0	mg/l				Manganèse		mg/l		0.00	0.40								1
Chlorure	20	mg/l	0,563		Calcu	Chlorure	20,	mg/l	0,563	Dose U2	8,40 mg/i		abc	<u>T</u> raiter	F <u>e</u> rr	ner	Calcu	d'incertitud	es
Sulfate	60	mg/l	1,25			Sulfate	60,	mg/l	1,25										
Nitrate	14,942	mg/l	0,241	Classe d'e	au selo	Nitrate	14,942	mg/l	0,241	Classe d'e	au selon la R	éalementa	ation Eau a	gressive (C	l. 3)/Ca Cst		Indice	s et Constan	tes
Nitrite	4,6	mg/l	0,1			Nitrite	4,6	mg/l	0,1										
Fluorure	6,8	mg/l	0,4		_	Fluorure	6,8	mg/l	0,4										
Oxygène diss	. 0,00	∣mg/l	0,0	Fichier:		Oxygene diss.	8,00	Img/l	81,3	Fichier:									
Unités d'I	Entrée Un	ités de S	ortie			Unités d'E	ntrée Un	ités de S	ortie										

Si l'eau est calcifiante ou bien que l'équilibre ne peut pas être atteint par aération (cas d'une eau située à gauche du point T commun aux courbes d'équilibre calcocarbonique et d'équilibre avec l'air) cette fonction est désactivée.

Cas d'une eau calcifiante sursaturée en CO2 par rapport à l'air

Cas d'une eau agressive non saturée de CO₂ par rapport à l'air

3^{ème} cas : On souhaite mettre l'eau à l'équilibre avec l'air

Lorsque cette option est choisie, la fenêtre de saisie du pH final disparaît et une fenêtre de saisie de la pression partielle de CO_2 dans l'air apparaît. Par défaut la valeur fixée dans le menu « Options » « Calcul » est affichée :

CLPLWin version 5.17 Fichier Analyse Visualiser Rapport Options ?
Température Variante Unité Environ Califore Scalifore Scalifore

Il suffit alors de renseigner la concentration finale de l'oxygène et éventuellement la pression partielle de CO₂, puis de cliquer sur le bouton « Appliquer » pour effectuer le calcul.

5-12-3) L'eau contient du fer divalent et du manganèse

Par exemple, l'eau 1 contient 0,1 me/l de fer (2,8 mg/l) et 0,3 mg/l de manganèse ; elle présente un pH de 7,2 :

	Valeur	Unité	en me/i		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	e Unit
mpérature	16,2	°⊂		ΣCations	5,748	me/l	pН	7,49	7,55		pН	8,73	
nductivité	c 579	µS/cm	475	ΣAnions	5,854	me/l	Delta pH	-0,51	-0,45		Delta pH	0,73	
	8			Balance	1,83	%	ACaCO,		-13,853	mg/l	∆ CO _z	-2,83	mg,
	c 26,	٩f	5,2	H,CO	4,854	mg/l	TAC	16,5	15,115	٩f	TAC	16,5	٩f
		٩f		HCO;	199,211	mg/l	HCO:	15,887	12,71	mg/l	HCO;	0,866	mg/l
	16,5	٩f	3,3	CO3-	1,007	mg/l	HCO;	200,655	183,723	mg/l	HCO;	190,565	mg/l
, libre	c 3,445	mg/l	0,078	CO ₂ Total	3,361	mM/I	CO3-	0,312	0,326	mg/l	CO3-	5,169	mg/l
cium	97,2	mg/l	4,86	λ	0,78		CO ₂ Total	3,551	3,222	mM/I	CO ₂ Total	3,224	mM/
nésium	4,131	mg/i	0,34	SatuRatio	3,22		∆ CO _z t	0,19	-0,139	mM/I	∆CO₂t	-0,137	mM/
ium	7,981	mg/l	0,347	Туре	Calcifiante		Calcium	97,2	91,659	mg/l	Saturatio	16,51	
assium	3,315	mg/l	0,085	SatuCO2	5,61		SatuCO2	18,35	14,68		Туре	Calcifiante	
monium	0,1	mg/l	0,005	Nom:			a	-	1	1			
divalent	2,8	mg/l	0,1					l lacet	Impri	mer	<u>M</u> ode de	dosage du T	r.a.c.
nganèse	0,3	mg/l	0,011										
orure	20	mg/l	0,563		Calculer		<u>e</u>	<u>T</u> raiter	Ferr	ner	Calcu	il d'incertitude	es
ate	60	mg/l	1,25										
ate	14,942	mg/l	0,241	Classed		با بر بر مراجع	-	cruetante (•	Indice	s et Constant	tes
ite	4,6	mg/l	0,1	Classe dies	au seion la na	egiemenia		icrustante (•		o or oonedan	
orure	6,8	mg/l	0,4										
gène diss.	0,00	mg/l	0,0	Fichier:									

La sélection du traitement d'« Aération-Déferrisation-Ozonisation » fait apparaître la même fenêtre que précédemment. Mais une case à cocher « Démanganisation catalytique »est maintenant visible et l'injection d'air ozoné est activée :

anisation catalytique	Unités ∩ mg/l (€ % Satu.
9	ganisation catalytique

Cette fonction permet de simuler l'oxydation du manganèse par exemple lors du passage sur un filtre contenant du dioxyde de manganèse lorsqu'elle est activée. Sinon, seul le fer divalent sera oxydé.

1) Injection d'air en réacteur clos

Si l'on sélectionne l'injection d'air en réacteur clos, les résultats seront les mêmes que précédemment si la démanganisation n'est pas sélectionné ; si elle est sélectionnée le manganèse aura disparu et le pH final sera légèrement plus faible (6,63 au lieu de 6,66) :

🕼 Eau: 1 Eta	ape: O	LP	у и ж	xxxxx		🕼 Eau: 1 Eta	ipe: 1	L	WIN XX	xxxxx									
	Valeur	Unité	en me/l		Résu		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmospher	eUnité
Température	16,2	∘⊂		ΣCations	5,74	Température	16,2	°C		ΣCations	5,638	me/l	pH	7,5	7,52		pH	8,72	
Conductivité	c 579	pS/cm	4/5	ΣAnions	5,85	Conductivité	c 570	µ5/cm	457	ΣAnions	5,743	me/l	Delta pH	-0,13	-0,11		Delta pH	1,09	
рН 🧲	8			Balance	1,83	pН	7,63			Balance	1,86	%	ACaCO,		-4,608	mg/l	ΔCO ₂	-7,258	mg/l
TH	c 26,	of	5,2	H.CO.	4,85	тн	26,	of .	5,2	H,CO'	11,094	mg/l	TAC	15,945	15,485	٩f	TAC	15,945	٩f
TA		٩f		HCO;	199,	TA		٩F		HCO;	193,674	mg/l	H,CO	14,905	13,84	mg/l	H,CO	0,866	mg/l
TAC	16,5	٩f	3,3	CO3-	1,00	TAC	15,945	٩F	3,189	CO3-	0,416	mg/l	HCO;	193,893	188,262	mg/l	HCO;	184,484	mg/l
CO ₂ libre	c 3,445	mg/l	0,078	CO ₂ Total	3,36	CO ₂ libre	7,873	mg/l	0,179	CO ₂ Total	3,361	mM/I	CO3-	0,31	0,314	mg/l	CO3-	4,836	mg/l
Calcium	97,2	mg/l	4,86	λ	0,78	Calcium	97,2	mg/l	4,86	λ	0,835		CO ₂ Total	3,424	3,315	mM/I	CO ₂ Total	3,119	mM/I
Magnésium	4,131	mg/l	0,34	SatuRatio	3,22	Magnésium	4,131	mg/l	0,34	SatuRatio	1,34		∆CO _s t	0,063	-0,046	mM/I	∆CO₂t	-0,242	mM/l
Sodium	7,981	mg/l	0,347	Туре	Calc	Sodium	7,981	mg/l	0,347	Туре	Calcifiante	•	Calcium	97,2	95,357	mg/l	Saturatio	15,55	
Potassium	3,315	mg/l	0,085	SatuCO2	5.61	Potassium	3,315	mg/l	0,085	SatuCO2	12,81		SatuCO2	17,21	15,98		Туре	Calcifiante	
Ammonium	0,1	mg/l	0,005	Nom:		Ammonium	0,1	mg/l	0,005	Trait.	Aération-Déf	erri.	2	-	1	.			
Fer divatent	2,8	mg/l	0,1	,		Fer divalent		mg/l		Réactif	Air (02)			I racer	Impri	imer			
Manganisse	0,3	mg/l	0,011			Manganèse		mg/l											1
Chlorure	20	mg/l	0.563		Calcu	Chlorure	20,	mg/l	0,563	Dose U2	10,33 mg/l		1	<u>T</u> raiter	Ferr	ner	Calcu	d d'incertitude	35
Sulfate	60	mg/l	1,25		_	Sulfate	60,	mg/l	1,25										
Nitrate	14,942	mg/l	0,241	Classe d'ea	au seld	Nitrate	14,942	mg/l	0,241	Classe d'ea	u selon la Br	éalement	ation Eauà	l'équilibre (I	Cl. 11/Ca Cs	st	Indice	s et Constani	tes
Nitrite	4,6	mg/l	0,1			Nitrite	4,6	mg/l	0,1			giomon	J		,				
Fluorure	6,8	mg/l	0,4			Fluorure	6,8	mg/l	0,4										
Oxygène diss.	0,00	mg/l	0,0	Fichier:		Oxygène diss.	9,84	mg/l	100,0	Fichier:									
Unités d'Er	ntrée Uni	tés de Si	ortie			Unités d'Er	ntrée Uni	tés de S	ortie										

2) Pulvérisation ou barbotage d'air

La fenêtre « Caractéristiques finales » apparaît. La fonction « pH imposé » étant sélectionnée par défaut, le message donnant les limites inférieure et supérieure signale une limite inférieure de 7,66 si la démanganisation n'est pas activée. Lorsque l'on active la démanganisation le message est modifié pour tenir compte de l'effet de l'oxydation du manganèse sur le pH :

S Traiter		🗟 Traiter 🔀
Irailement à appliquer : Mire à l'équilite Apout d'une dose imposée Mire à un pH imposé Décadonatation ou adoucissement Sadu faito imposé Décadonatation ou adoucissement Sadu faito imposé Décadonatation ou adoucissement Sadu faito imposé Décadonatation ou adoucissement Sadu faito imposé Décadonation nois dougue PH imposé PH imposé PH imposé Appliquer Appliquer Appliquer Appliquer Appliquer Appliquer Appliquer Appliquer la doit être compris entre le pH après éventuelle précipitation du Fell (num) (7,66) et le ph après éventuelle précipitation du Fell (num) (7,66) et le ph après éventuelle précipitation du Fell (num) (7,66) et le ph après éventuelle précipitation du Fell (num) (7,66) et le ph après éventuelle précipitation du Fell (num) (7,66) et le ph après éventuelle précipitation du Fell (num) (7,66) et le ph après éventuelle précipitation du Fell (num) (7,66) et le ph ap	Concentration finale de l'oxygène : [100 Unités C mg/l C % Satu	Iraitement à appliquer : Mise à réquitire Ajout d'une dose imposée Mise à un pH imposé Température imposée Décadonation ou adoucissement Sublitation Saturdation Médange Saturdation Nitrification biologique Appliquer Apperature le pH après éventuelle précipitation du Fell (Mu/M) (7,53) et le ph après contact

Si l'on saisi une valeur de pH en dehors des limites indiquées (qui ne peut être atteint par contact avec l'air) un message d'erreur apparaît :

🕞 Eau: 1 Et			X
	Valeur	Unit - les a la se la se la se la se la se la se la se la se la se la se la se la se la se la se la se la se la	
Température	16,2	C D Traiter	X
Conductivité	c 579	u5/ .	_
pH	8		
тн	c 26,	of Iraitement à appliquer :	
TA		of Mise à l'équilibre Type de traitement	
TAC	16,5	of Ajout d'une dose imposée C Injection d'oxygène (ou d'air) en Réacteur clos finale de	'
CO, libre	c 3,445	mg. Mise à un 140 impuse Pulvérisation ou barbotage d'air l'oxygène :	
Calcium	97,2	mg. Tempéra and a second and a second second for a second for a second	
Magnésium	4,131	mg. Décarbo LpIWin 5	
Sodium	7,981	mg, SatuRat Ir Démanganisation catalytique Unités	
Potassium	3,315	Mg Mélange Erreur : pH incorrect, Caractéristiques finales C mg/l	
Ammonium	0,1	mg Concent Con	
Fer divalent	2,8	mg Satu CO	
Manganèse	0,3	mg Aération OK C Equilibre avec CaCO3	
Chlorure	20	ng, Nitrihcat	
Sulfate	60	mg, Appliquer, Appular, C Equilibre avec l'air	
Nitrate	14,942	Wd . Shudoo, Churdree	
Nitrite	4,6	mg A	-
Fluorure	6,8	mg. Le pH doit être compris entre le pH après éventuelle précipitation du Fell (ou Mn) (7.63) et le pH après contact	
Oxygène diss.	0,00	mg / avec l'air (8.72)	
Unités d'E	ntrée Uni	tés de sourie	

Si la mise à l'équilibre calcocarbonique est possible par aération (eau agressive dont le oint figuratif est situé à droite du point T commun aux courbes d'équilibre avec l'atmosphère et d'équilibre calcocarbonique, ou eau calcifiante située à gauche du point T), la fonction « Equilibre avec CaCO3 est activée.

On peut aussi sélectionner la mise à l'équilibre avec l'air.

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.118/136

3) Injection d'air ozoné

- E 4 Et-					
Cau: I Eta	ipe: 0	cxemt	ole versi	I 5 LPWIN XXXXXXX	
	Valeur	Unité	en me/l	Résultats Unité E Traiter	L
Fempérature	16,2	°C		ΣCations 6,132 me/ g	
Conductivité	600	µS/cm	492	ΣAnions 6,151 me/l I Traitement à appliquer :	
H	7			Balance 0,31 % / Mise à l'équilibre	Type de traitement
гн	c 26,	٩f	5,2	H_CO_ 49,236 mg/l Ajout d'une dose imposée	C Injection d'oxygène (ou d'air) en Réacteur clos
ΓA		٩f		HCO; 202,253 mg/l H Mise à un TAC imposé	
FAC	16,5	٩f	3,319	CO ²⁻ 0,103 mg/l H Mise à un pH imposé	Pulverisation ou barbotage d'air
CO ₂ libre	c 0,794	me/l	0,794	CO, Total 4,111 mM/l C Décarbonatation ou adouciesement	 Injection d'air ozoné (sans modification du CO2 Total)
Calcium	4,86	me/I	4,86	λ 0,77 C SatuBatio imposé	
Magnésium	0,34	me/l	0,34	SatuRatio 0,32 4 Reminéralisation	
Sodium	0,347	me/I	0,347	Type Agressive d Mélange	
Potassium	0,085	me/l	0,085	SatuCO2 56,87 Concentration	
Ammonium	1,8	mg/l	0,1	Nom: Exemple Version 5 Aération-Déferrisation-Ozonisation	
Fer divalent	0,1	me/l	0,1	Nitrification biologique	×
Manganèse	0,3	me/I	0,3		
Chlorure	0,789	me/l	0,789	Calculer Appliquer Annuler	
Sulfate	1,302	me/l	1,302		
vitrate	0,241	me/l	0,241	Clause d'acusater la Déalessentation () Cette eau contenant du Mang	anèse et pas (ou peu) de Fer, le traitement pourrait être l'ozonisation ou l'oxydation
Nitrite	0,1	me/l	0,1	catalytique (simulée aussi par li	ozonisation)
Fluorure	0,4	me/l	0,4		
Oxvoène diss.	8,00	mg/l	81,2	Fichier: C:\Documents and Set	

Cette option de traitement permet la précipitation du fer divalent ainsi que du manganèse et l'oxydation des ions nitrites. La concentration finale de l'oxygène dissous est, dans ce cas, réputée égale à la saturation, l'ozonation étant toujours réalisée avec un excès d'air.

Il suffit de cliquer sur « Appliquer » pour lancer les calculs :

🎊 LPLWin ver	sion 5.13	3																	
Fichier Analyse	Visualiser	Rappo	rt Options	?															
													_						
🕼 Eau: 1 Et					VIN XXXX	📴 Eau: 1 Eta	ipe: 1	Exem	ple Versi	on 5 LPW	IN XXXX	xxxx							
	Valeur	Unité	en me/i		Résultats		Valeur	Unitá	en me/l		Récultate	Linitá	Equilibres	CaCet	Marbre	Lložá	Equilibre	Atmospha	Ation
Température	16,2	℃		ΣCations	6,132	Température	16.2	90	GITTIGH	ΣCations	5 732	mel	nH	7 54	7.29	OTING	nH	8.68	COTILE I
Conductivité	600	uS/cm	492	ΣAnions	6,151	Conductivité	569	uS/cm	467	Σ Anions	5 751	mell	Delta oH	0.77	0.52		Delta pH	1.91	
pН	7			Balance	0,31	pH	6.77	poran	107	Balance	0.34	9/0	ACaCO-	, <i></i>	67.534	ma/l	A CO.	-51.887	ma/l
TH	c 26	٩f	5,2	H,CO,	49,236	TH	26	of	5.2	HCO.	73.98	mal	TAC	14,596	21,352	of	TAC	14,596	of
TA		٩f		HCO;	202,253	TA	,	of	-/-	HCO:	177,959	mal	HCO:	12,446	32,357	ma	HCO.	0.866	ma/
TAC	16,596	٩f	3,319	CO3-	0,103	TAC	14.596	of	2,919	CO3-	0.053	mg/l	HCO:	177.374	259.899	ma/l	HCO:	168,966	mg/l
CO ₂ libre	c 34,942	mg/l	0,794	CO ₂ Total	4,111	CO, libre	52,502	ma/l	1,193	CO, Total	4.111	mM/I	CO:	0.311	0.262	ma/l	CO3-	4.059	ma/l
Calcium	97,2	mg/l	4,86	λ	0,77	Calcium	97,2	mg/l	4,86	λ	0,97		CO, Total	3,114	4,787	mM/I	CO, Total	2,852	mM/l
Magnésium	4,131	mg/l	0,34	SatuRatio	0,32	Magnésium	4,131	mg/l	0,34	SatuRatio	0,17		ACO ₂ t	-0,998	0,675	mM/I	∆CO.t	-1,26	mM/I
Sodium	7,981	mg/l	0,347	Туре	Agressive	Sodium	7,981	mg/l	0,347	Туре	Agressive	2	Calcium	97,2	124,214	mg/l	Saturatio	13,02	
Potassium	3,315	mg/l	0,085	SatuCO2	56,87	Potassium	3,315	mg/l	0,085	SatuCO2	85,44		SatuCO2	14,37	37,37		Туре	Calcifiante	
Ammonium	1,8	mg/l	0,1	Nom: Er	emple Vers	Ammonium	1,8	mg/l	8.1	Trait	Ozonisation				1				
Fer divalent	2,8	mg/l	0,1	,		Fer divalent		mg/l		Réactif	Air (Ozone)		E I	T <u>r</u> acer	Impr	imer			
Manganèse	8,25	mg/l	0,3			Manganèse		mg/l											
Chlorure	28,01	mg/l	0,789		<u>Calculer</u>	Chlorure	28,01	mg/l	0,789	Dose	12,00 mg/l		<u>e</u>	Traiter	Fer	mer	Calc	ul d'incertitud	es
Sulfate	62,496	mg/l	1,302			Sulfate	100		1,302						i	j			
Nitrate	14,942	mg/l	0,241	Classe d'e	au selon la Bé	Nitrate	21,142	mg/l	0,341	Charles des		£	-	merceive (C			Indice	es et Constan	tes I
Nitrite	4,6	mg/l	0,1	01000000	aa solonna ma	Nitrite		mg/l		Classe diea	u seion ia n	eglement	ation Louis	gressive (C	i. Syrca cat			o or ooneran	
Fluorure	6,8	mg/l	0,4			Fluorure	6,8	mg	0,4										
Oxygène diss.	8,00	mg/l	81,2	Fichier:	C:\Docume	Oxygène diss.	9,85	mg/l	100,0	Fichier:	C:\Docum	nents and	Settings\Pierr	e\Mes docu	uments\Me:	s Docume	nts Profession	nels\Don	
Unités d'E	ntrée Un	ités de S	iortie			Unités d'Er	ntrée Un	ités de S	ortie										

5-12-4) L'eau ne contient pas de fer divalent

Dans ce cas, l'injection d'air en réacteur clos n'a pas de conséquence sur les caractéristiques de l'eau et si le manganèse est absent, elle ne présente pas d'autre intérêt que d'augmenter la concentration de l'oxygène dissous. Deux possibilités doivent être considérées selon que l'eau contient ou non du manganèse.

1) Cas où l'eau contient du manganèse

L'élimination du manganèse peut être réalisée par une simple aération dans la mesure où l'option « Démanganisation catalytique » est activée. Ainsi dans ce cas, l'option « Démanganisation catalytique est activée lors de l'ouverture de la fenêtre :

📴 Eau: 1 Eta	ape: O	U	WIN XX	XXXXXX	
Tarratar	Valeur	Unité	en me/i	F	🗟 Traiter
Conductivité	c 575	µS/cm	471	ΣAnions 5	
pН	8			Balance 3	Traitement à appliquer :
TH	c 26,	٥f	5,2	HCO, 4	Mise à l'équilibre
TA		٥f		HCO; 1	Ajout d'une dose imposée
TAC	16,5	٩f	3,3	CO2- 1	Mise a un TAU impose C Pulvérisation ou bathotane d'air l'ownor
CO ₂ libre	c 3,446	mg/l	0,078	CO, Total 3	Température imposée
Calcium	97,2	mg/l	4,86	λ 0	Décarbonatation ou adoucissement
Magnésium	4,131	mg/l	0,34	SatuRatio 3	SatuRatio imposé 🛛 👘 🔽 Démanganisation catalytique 💙 Unités –
Sodium	7,981	mg/l	0,347	Type C	Hemmeralisation C mg/
Potassium	3,315	mg/l	0,085	SatuCO2 5	Concentration
Ammonium	0,1	mg/l	0,005	Nom:	Satu CO2 imposé
Fer divalent	0	mg/l			Aération-Déferrisation-Uzonisation
Manganèse	0,3	mg/l	0,011		
Chiorure	20	mg/l	0,563		Appliquer Annuler
Sunate	60	mg/l	1,25		
INITIALE	14,942	mg/l	0,241	Classe d'eau	Cette eau contenant du Manganèse et pas (ou peu) de Fer. le traitement pourrait être l'ozonisation ou l'oxydal
NITTE	9,5 6.0	mg/l	0,1		catalytique (simulée aussi par l'ozonisation)
HUOTUTE	5,8	mg/l	0,9		6

Il suffit alors de préciser la concentration finale de l'oxygène puis de valider.

Si l'on désactive l'option de démanganisation, le seul effet du traitement sera d'augmenter éventuellement la concentration de l'oxygène dissous.

Il est aussi possible de simuler une pulvérisation ou barbotage d'air avec les 3 mêmes possibilités précédemment décrites (mise à un pH imposé, mise à l'équilibre calcocarbonique ou à l'équilibre avec l'air) ou de simuler le traitement d'ozonisation.

2) Cas où l'eau ne contient pas de manganèse

L'eau étant dépourvue de fer divalent et de manganèse, la première option (injection d'air sous pression) et la troisième option (injection d'air ozoné) sont sans objet et donc désactivées. De même, l'option « Démanganisation catalytique » étant sans objet reste masquée. La fenêtre « Caractéristiques finales » apparaît immédiatement :

🗊 Eau: 1 Et			у им	xxxxxx		
-		11-34			Traiter	
Taranératura	14 2	oc	len mevi	T Cations Fr		
Conductivité	6 574	usice.	471	ZGanons 5,0	Traitament à analismer	
SUBJECTIVILE	0	μογαπ	7/3	Palanna 21	Liakonon a appliquoi .	
TH	0	06	5.2	Balance 5,	Mise a requilibre	ncentra
TA	L 20,	06	2,2	4,0	Mise à un TAC imposé	finale d
TAC	14 5	OF	2.2	19	Mise à un pH imposé	oxygèn
COLIN	10,5	-1	3,3	00 Tatal 21	Température imposée	100
CO ₂ libre	C 3,447	mg/i	0,078	UU, Iotal 3,	Décarbonatation ou adoucissement	
Galcium	97,2	mg/l	9,85	A U,	Beminéralisation	rines
Cardium	7,001	mg/l	0,34	Saturatio 3,	Mélange) mg∕
Souum	7,981	mg/l	0,347	Type La	Concentration	• % S
Potassium	3,315	mg/i	0,085	ISATUCO2 5,6	Satu CD2 imposé	
Ammonum	0,1	mg/l	0,005	Nom:	Aeration-Deternisation-Uzonisation	
reroivalent	0	mg/l				
Ivianganese	0	mg/l			Appliquer Annuler Equilibre avec l'air	
Chlorure	20	mg/l	0,563	<u>_</u> a		
Sulfate	60	mg/l	1,25			_
Nitrate	14,942	mg/l	0,241	Classe d'eau s	Le pH doit être compris entre le pH après éventuelle précipitation du Fell (ou Mn) (8) et le pH après co	ntact av
Nitrite	4,6	mg/l	0,1		Liair (8,73)	
Fluorure	6,8	mg/l	0,4			
Oxygène diss.	0,00	mg/l	0,0	Fichier: E		

Comme dans le cas précédent, on peut choisir les caractéristiques finales de l'eau après contact avec l'air.

5-13) Nitrification biologique

5-13-1) Rappels

De nombreuses ressources d'eau superficielle ou souterraine contiennent de l'ammonium. Si, comme on l'a vu précédemment, le chlore permet d'éliminer l'ammonium qui s'oxyde alors en azote gazeux, un traitement de plus en plus utilisé consiste à utiliser les fonctions de certaines bactéries de l'environnement qui oxydent l'ammonium et les nitrites en nitrates par voie enzymatique.

Bien qu'il s'agisse de réactions biologiques, on peut exprimer les réactions par des équations chimiques. Ainsi, l'oxydation des ions ammonium en nitrate est représentée par l'équation suivante :

$$2NH_4^+ + 5O_2 \Leftrightarrow 2NO_3^- + 2H_2O + 4H^-$$

Et l'oxydation des ions nitrite en nitrate par l'équation :

$$2N\dot{O}_2^- + O_2 \Leftrightarrow 2NO_3^-$$

L'utilisation de ces équations, bien qu'elles ne tiennent pas compte des autres réactions biologiques (respiration, synthèse des protéines,...), reste suffisante pour évaluer l'effet de ces oxydations sur les caractéristiques d'une eau.

Pour ce faire, il ressort des équations que :

- La nitrification de l'ammonium nécessite une quantité importante d'oxygène qui peut parfois être supérieure à la concentration correspondant à la saturation.il est alors nécessaire de prévoir une aération complémentaire ;
- La nitrification de l'ammonium entraîne une acidification de l'eau et donc une modification de l'état calco-carbonique de l'eau.

D'autre part, si l'eau contient également du fer divalent (cas des eaux souterraines profondes), l'aération entraînera aussi l'oxydation de fer.

5-13-2) Applications dans LPLWin

Ce traitement n'est disponible dans la liste que dans la mesure où l'eau contient des ions ammonium et/ou des ions nitrite.

Le choix de ce traitement fait apparaître une fenêtre « Conditions de nitrification » spécifique à ce traitement :

Dans le cas de l'exemple présenté, deux possibilités peuvent se présenter :

1. L'oxydation est effectuée sans aération complémentaire,

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.121/136

2. L'oxydation est effectuée avec une aération complémentaire.

Pour simuler la première possibilité de traitement, il suffit alors de cliquer sur la touche « Appliquer » :

🔆 LPLWin ver	sion 5.13	3																	
Fichier Analyse	Visualiser	Rappor	rt Options	?															
D Fau: 1 Ft	ane 0	Fxem	nle Versi	on 5 I₽\	WIN	10 Frank 4 FA		F	-1-1/	E D)4		~~~~		-					
	aper e	Cherry				UP Eau: TEC	ape: 1	exem	pie vers	ION D LPW		~~~~						-	
	Valeur	Unité	en me/l		Ré		Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphèr	re Unité
Température	16,2	°C		ΣCations	5,8	Température	16,2	°C		ΣCations	5,732	me/l	pH	7,51	7,41		pH	8,71	
Conductivité	600	µS/cm	492	ΣAnions	5,8	Conductivité	587	µS/cm	482	ΣAnions	5,715	me/l	Delta pH	0,41	0,31		Delta pH	1,61	
pH	7,3	~		Balance	0	pН	7,1			Balance	-0,29	%	ACaCO,		25,941	mg/l	ΔCO ₂	-25,716	mg/l
TA	C 26,	T of	5,2	H,CO,	24	TH	26,	٩f	5,2	H.CO.	37,102	mg/l	TAC	15,667	18,261	٩f	TAC	15,667	of
TAC	16 506	of	2 222	CO2-	20	TA		ef	-	HCO;	190,888	mg/l	H,CO,	14,383	21,194	mg/l	H,CO,	0,866	mg/l
CO_libre	c 17 603	mad	0.4	CO Total	3.1	TAC	15,667	*	3,133	CO;	0,121	mg/l	HCO;	190,496	222,192	mg/l	HCO;	181,456	mg/l
Calcium	97.2	mail	4.86	2		CO ₂ libre	26,331	mg/l	0,598	CO ₂ I otal	3,73	mM/I	CO;	0,31	0,289	mg/l	CO;	4,679	mg/l
Magnésium	4,131	mal	0.34	SatuRati		Calcium	97,2	mg/i	4,86	A	0,863		CO, Total	3,36	3,989	mP1/I	CO, Total	3,067	mm/i
Sodium	7,981	mg/l	0.347	Туре	Ad	Sodium	4,131	mg/i	0,34	Saturcatio	0,39		ACO ₂ I	07.2	107 577	mP1/1	ACO ₂ r	15.04	m™i/i
Potassium	3,315	mg/l	0,085	SatuCO2	28	Dotassium	3 315	mad	0,085	Stucoz	42.85	-	Satu CO2	16.61	24 49	mg/i	Type	Calcifiante	
Ammonium	0,9	mg/l	0,05	Nom: E		Ammonium	5,515	ma	0,005	Tue	MAX ELLER			10,01	21,10		TYPE	Calcinarite	
Fer divalent	2,8	mg/l	0,1		xem	Fer divalent		mg/i		Béactif	NITIT: DIOLOG	ique	മപ	Tracer	Imp	imer			
Manganèse	2,75	mg/l	0,1			Manganèse	2.75	mol	0.1	Ticdear	Oxygene								
Chlorure	28,01	mg/l	0,789		Cal	Chlorure	28.01	mail	0,789	Dose	4,40 mg/l		<u>e</u>	Traiter	Fer	mer			es
Sulfate	52,896	mg/l	1,102		_	Sulfate	52,896	mgl	1,102										
Nitrate	14,942	mg/l	0,241	Classe d'e	S LIN	INITALE	21,142	p g/	0,341	C		<i>4</i> - 1	- the East	oreceive (f	1.3)/Ca.Cel		Indice	e et Constan	tes
Nitrite	2,3	mg/l	0,05	2.3000 0 0		Nitrite		mg/l		Classe d'ea	iu seion la H	egiement	ation Louis	igrossive (c	a. Special Cal				~~~
Fluorure	5,95	mg/l	0,35			Fluorure	5,95	mg/l	0,35										_
Oxygéne diss.	8,00	img/l	81,2	Fichier:	ιu	Oxygène diss.	3,60	mg/l	36,5	Fichier:	C:\Docum	nents and	Settings\Pierr	e\Mes doc	uments∖Me	s Docume	ents Profession	nels\Don	
Unités d'E	ntrée Un	ités de S	ortie			Unités d'E	ntrée Un	ités de S	ortie										
		_						_	_		_	_		_	_	_		_	

Le fer divalent, l'ammonium et les nitrites ont été oxydés et ces derniers ont été transformés en nitrate. La dose d'oxygène nécessaire à ces réactions, apparaît dans la fenêtre « Trait. » et la concentration de l'oxygène dissous est modifiée en conséquence.

L'eau contenant aussi du manganèse, on peut aussi simuler une démanganisation catalytique en cochant l'option correspondante (il va de soi que cette option n'apparaît que dans la mesure où le manganèse est présent).

Pour simuler la deuxième possibilité de traitement il convient de cocher l'option correspondante. Sous le bouton de cette option apparaissent alors la concentration finale de l'oxygène dissous et le bloc des unités correspondantes :

🎊 LPLWin ver	sion 5.1	3				
Fichier Analyse	Visualiser	Rappo	rt Optior	is ?		
🗊 Eau: 1 Eta	ape: 0	U	PWIN XX	XXXXXX	Traiter	
Température Conductivité pH TH TA TAC CO, libre Caldum Magnésium Sodum Sodum Sodum Sodum Rer divalent Ammonium Fer divalent Magnése Chlorure Sulfate Nikrate Nikrate Nikrate Nikrate	Valeur 16,2 600 7,3 c 26, 16,596 c 17,603 97,2 4,131 7,981 3,315 0,9 2,8 2,75 28,01 52,896 14,942 2,3 5,95 8,00	Unité °C µS/cm °f of mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/ mg/	en me/l 492 5,2 3,333 0,4 4,86 0,34 0,085 0,05 0,1 0,1 0,789 1,102 0,241 0,05 0,35 81,2	Σ Cations Σ Anions Balance HCO [*] ₂ CO [*] ₂ CO [*] ₂ CO [*] ₂ CO [*] ₂ SatuRat Type SatuCO2 Nom: Classe d Fichier.	Iraitement à appliquer : Mise à l'équilbre Apped fune doe imposée Mise à l'équilbre Apped fune doe imposée Décathon atein posée Concentration Reminératisation Mélange Concentration Déferrit ation Consisteion Nitritécion bologique Appliquer Appliquer Appliquer Cobocuments and Settings/Pierre/Mes documents/Mes Documents Professionnels/Don	
Unités d'Ei	ntrée Un	ités de S	ortie			

Le choix de la concentration finale de l'oxygène dissous et éventuellement l'option de démanganisation étant faits, il suffit de cliquer sur la touche « Appliquer » pour lancer les calculs :

🕼 LPLWin ver	rsion 5.1	3														
Fichier Analyse	Visualiser	Rapport	Options ?													
🗊 Eau: 1 Eta			🗊 Eau: 1 Et	ape: 1	LF	WIN XX	xxxxxx									
	Valeur	Unité e		Valeur	Unité	en me/l		Résultats	Lloité	Equilibres	Ca Cat	Marbre	Unité	Equilibre	Atmosphère	Unité
Température	16,2	°C	Température	16.2	°C	on mon	ΣCations	5.732	me/l	oH	7.51	7.41	Onito	oH	8.71	Onico
Conductivité	600	µS/cm 4	Conductivité	587	uS/cm	482	ΣAnions	5.715	me/l	Delta pH	0.41	0.31		Delta pH	1.61	
pН	7,3		рН	7.1			Balance	-0.29	%	ACaCO.	-,	25.941	ma/l	A CO.	-25.716	ma/l
TH	c 26,	°f 5	тн	26,	of	5,2	H,CO	37,102	mg/l	TAC	15,667	18,261	of	TAC	15,667	of
TA		٩f	TA		٩f		HCO;	190,888	mg/l	H,CO	14,383	21,194	mg/l	H,CO	0,866	mg/l
TAC	16,596	of 3	TAC	15,667	٩f	3,133	CO3-	0,121	mg/l	HCO;	190,496	222,192	mg/l	HCO;	181,456	mg/l
CO ₂ libre	c 17,603	mg/l 0	CO ₂ libre	26,331	mg/l	0,598	CO ₂ Total	3,73	mM/I	CO3-	0,31	0,289	mg/l	CO3-	4,679	mg/l
Calcium	97,2	mg/1 4	Calcium	97,2	mg/l	4,86	λ	0,863		CO ₂ Total	3,36	3,989	mM/I	CO ₂ Total	3,067	mM/I
Magnésium	4,131	mg/l 0	Magnésium	4,131	mg/l	0,34	SatuRatio	0,39		∆CO₂t	-0,37	0,259	mM/I	∆CO₂t	-0,663	mM/I
Sodium	7,981	mg/l 0	Sodium	7,981	mg/l	0,347	Туре	Agressive		Calcium	97,2	107,577	mg/l	Saturatio	15,04	
Potassium	3,315	mg/l 0	Potassium	3,315	mg/l	0,085	SatuCO2	42,85		SatuCO2	16,61	24,48		Туре	Calcifiante	
Ammonium	0,9	mg/i U	Ammonium		mg/l		Trait.	Nitrif. biologi	que	20	-	1	. [
Managadan	2,0	mg/i U	Fer divalent		mg/l		Réactif	Oxygène			I racer	Impr	imer			
Chlorum	2,75	mg/i U	Manganèse	2,75	mg/l	0,1										1
Sulfata	20,01	mg/i U	Chlorure	28,01	mg/l	0,789	Dose	4,40 mg/l		abc	<u>T</u> raiter	F <u>e</u> rr	mer	Calcu	l d'incertitude	s
Nitrato	14 042	mg/i 1	Sulfate	52,896	mg/l	1,102										
Nitrite	2.3	mg/i 0	Nitrate	21,142	mg/l	0,341	Classe d'e	au selon la R	éalement	ation Eau a	gressive (C	I. 3)/Ca Cst		Indice	s et Constant	es
Fluorure	5.95	mg/i 0	Nitrite		mg/l				-	1						
Oxygène diss	8.00	ma/ 8	Fluorure	5,95	mg/l	0,35		0.10		o			0		110	
			Oxygene diss.	a,00	mg/i	01,2	Fichier:	JC: Docum	ents and	Settings\Pierre	Mes docu	iments\Me	s Docume	ints molession	iels (Dion	
Unités d'E	ntrée Uni	ités de Sort	Unités d'E	ntrée Un	ités de Si	ortie										

Si la dose d'oxygène nécessaire à l'oxydation du fer divalent, des nitrites et de l'ammonium est supérieure à la concentration initiale de l'oxygène dissous, l'option « Sans aération complémentaire » est alors désactivée et seule l'option 'Avec aération complémentaire' est disponible :

🙆 LPLWin ver	rsion 5.1	3			
Fichier Analyse	Visualiser	Rapport (Options ?		
💬 Eau: 1 Eta	ape: 0	LPWI	N XXXXX	(XX	
Tomnómturo	Valeur	Unité en r	me/i	🗗 Traiter	
Conductivité pH TH TA TAC CO ₂ libre Calcium Magnésium Sodium Potassium Ammonium	10,2 600 7,3 c 26, 16,596 c 17,603 97,2 4,131 7,981 3,315 0,9	C μs/cm 492 of 5,2 of of 3,33 mg/l 0,4 mg/l 0,44 mg/l 0,34 mg/l 0,34 mg/l 0,034 mg/l 0,034 mg/l 0,005 mg/l 0,005 mg/l 0,005	2 2 3 3 3 3 3 3 3 3 4 5 Ν 5 Ν	Iraitement à appliquer : Mise à l'équilibre Ajout d'une dose imposée Mise à un TAC imposé Température imposée Décathonatation ou adoucissement SatuRatio imposé Reminéralisation Mélange Concentration Satu CD2 imposé	Conditions de nitrification Sans aération complémentaire Concentration finale de l'oxygène : Démanganisation catalytique Conduction finale Unités Complémentaire
Fer divalent Manganèse Chlorure Sulfate Nitrate Nitrite Fluorure Oxygène tes.	2,8 2,75 28,01 52,896 14,942 2,3 5,95 4,00	mg/ 0,1 mg/ 0,1 mg/ 0,7 mg/ 1,10 mg/ 0,2 ² mg/ 0,0 mg/ 0,3 mg/ 40,4 tés de Sortie	89 02 41 5 5 6	Aeration-Uzonsation Ninfrication biologique	

Il convient donc de renseigner, comme précédemment, la concentration finale de l'oxygène et éventuellement d'activer la démanganisation catalytique, puis de cliquer sur la touche « Appliquer » pour lancer les calculs.

Enfin, si la concentration de l'oxygène dissous est supérieure à la dose nécessaire à l'oxydation du fer divalent, des nitrites et de l'ammonium, mais inférieure à la dose nécessaire à l'oxydation de ces éléments augmentée de celle qui nécessaire à l'oxydation catalytique du manganèse, l'option « Démanganisation catalytique » n'est plus accessible :

	visualiser	карро	n Option	s r			
炉 Eau: 1 Eta	ape: 0	LF	WIN XX	XXXXXX			
	Valeur	Unité	en me/l		Résulta		
Température	16,2	°C		ΣCations	5,882	· If allel	
Conductivité	600	µS/cm	492	ΣAnions	5,865		
pH	7,3			Balance	-0,28	Traitement à anniquer	
TH	c 26,	٩f	5,2	H,CO	24,804	Mise à l'équilibre	
TA		٩f		HCO;	202,903	Ainut d'une dose imposée	
TAC	16,596	٩f	3,333	CO3-	0,204	Mise à un TAC imposé C Sans aération C Avec aération	
CO ₂ libre	c 17,603	mg/l	0,4	CO ₂ Total	3,73	Mise à un pH imposé complementaire complementaire	
Calcium	97,2	mg/l	4,86	λ	0,763	Température imposée	
Magnésium	4,131	mg/l	0,34	SatuRatio	0,65	Satu Balin imposé	
Sodium	7,981	mg/l	0,347	Туре	Agress	Reminéralisation	
Potassium	3,315	mg/l	0,085	SatuCO2	28,65	Mélange	
Ammonium	0,9	mg/l	0,05	Nom:		Concentration	
Fer divalent	2,8	mg/l	0,1			Satu LU2 impose	
Manganèse	2,75	mg/l	0,1			Nitrification biologique	
Chlorure	28,01	mg/l	0,789		Calculer		
Sulfate	52,896	mg/l	1,102			Appliquer <u>Annuler</u>	
Nitrate	14,942	mg/l	0,241	Charles			
Nitrite	2,3	mg/l	0,05	Liasse diei	au selon i		
Fluorure	5,95	mg/l	0,35				
Ovvinène diss	5.00	mg/l	50.8	Fichier:			

Il suffit alors de sélectionner l'aération complémentaire pour faire apparaître l'option « Démanganisation catalytique » et la concentration finale souhaitée de l'oxygène dissous, comme indiqué plus haut.

5-14) Réduction chimique des nitrates

5-14-1) Rappels

Dans les circuits fermés de chauffage ou de climatisation, on constate généralement la réduction de l'oxygène dissous et une réduction plus ou moins complète des nitrates qui s'accompagne de l'apparition de nitrites et/ou d'ammonium ou de l'augmentation de leurs concentrations. Cette réaction s'accompagne aussi de l'apparition de fer divalent.

Ces réactions résultent de la corrosion du métal des conduites ou des diverses installations du circuit. La corrosion conduit aussi à l'augmentation progressive du pH de l'eau jusqu'à atteindre environ 10. Lorsque ce pH est atteint, la corrosion est fortement ralentie et peut même s'arrêter.

Les diverses réactions chimiques ou électrochimiques responsables de cette évolution des caractéristiques de l'eau sont les suivantes :

A l'anode :

Réaction de corrosion : $Fe \Leftrightarrow 2e^- + Fe^{2+}$

Réaction de dismutation :	$3Fe^{2+} + 6H_2O \Leftrightarrow Fe + 2Fe(OH)_3 + 6H^+$
Précipitation	$Fe^{2+} + 2H_2O \Leftrightarrow Fe(OH)_2 + 2H^+$

A la cathode :

Réduction NO₃⁻ en NO₂⁻ Réduction NO₂⁻ en NH₄⁺ $NO_3^- + 2e^- + 2H^+ \Leftrightarrow NO_2^- + H_2O$ $NO_2^- + 6e^- + 8H^+ \Leftrightarrow NH_4^+ + 2H_2O$

On peut remarquer que le fer divalent peut soit précipiter sous forme d'hydroxyde ferreux soit, après dismutation, précipiter sous forme d'hydroxyde ferrique. En fait, le fer divalent précipité est généralement sous a forme d'hydroxyde ferro-ferrique, $Fe_3(OH)_8$ qui est ferromagnétique (il est d'ailleurs parfois mentionné que l'on trouve dans ces circuits fermés de « l'oxyde magnétique » qui n'est en réalité que l'hydroxyde correspondant). Ces propriétés magnétiques sont d'ailleurs utilisées lorsque l'on installe un « filtre magnétique » pour réaliser le désembouage des circuits.

Globalement, l'ensemble de ces réactions est résumé par l'équation suivante :

 $NO_3^- + 3Fe + 7H_2O \Leftrightarrow NH_4^+ + Fe_3(OH)_8 + 2OH^-$

D'autre part, le fer divalent resté en solution correspond à des ions OH⁻ qui ont été formés par les réactions cathodiques.

Il faut donc tenir compte de ces réactions et de la concentration des ions fer divalent en solution dans les calculs.

5-14-2) Application dans LPLWin

Les réactions décrites ci-dessus peuvent être complètes si le circuit est en équilibre, mais généralement, compte tenu des appoints d'eau nécessaire notamment pour compenser les fuites des circuits, l'eau peut encore présenter des concentrations de nitrites et même de nitrates non nulles. Il est donc nécessaire de tenir compte de ces éventuelles concentrations résiduelles.

D'autre part, la concentration du fer divalent en solution étant très rarement nulle, il est aussi nécessaire de la connaître.

Bien qu'il ne s'agisse pas d'un traitement mais d'une évolution de l'eau au cours des réactions de corrosion, on a classé cette évolution dans les traitements.

Le choix de ce « traitement » fait apparaître la fenêtre « Concentrations finales » où figurent les nitrates et les nitrites ainsi que le fer divalent :

Fichier Analyse Visi	ualiser Rappo	rt Options ?	
Va Température 16 Conductivité 60	<u>,2</u> ℃ 0 uS/cm	en me/l ΣC	a Traiter
pH 7,2 TH c 26 TA 16 CO, libre c 17 Calcium 97 Magnésium 4, Sodium 7, Potassium 3, Ammonium 0,9 Fer divalent 2,4 Magnèsse 2,7	, of ,596 of ,603 mg/l ,2 mg/l 131 mg/l 381 mg/l 39 mg/l 39 mg/l 37 mg/l 9 mg/l 38 mg/l 37 mg/l 38 mg/l 39 mg/l 30 mg/l 31 mg/l 30 mg/l	Bal 5,2 H ₂ C 3,333 CO 0,4 CO 0,343 Sat 0,344 Sat 0,055 Non 0,11 0,780	Ireitement à appliquer : Apput d'ume dosse imposée Mise à un TAC imposé Mise à un TAC imposé Decashonatation ou adoucissement Saturation mosée Reminie allastion Concentration Concentration posé Nitrate Concentration Saturatio imposé Concentration Concentration Concentration Malange Saturation Décision Natire Vinification biologique Natire Reduction biologique Natire Reduction biologique Reduction biologique Reduction chrimous de mitate
Sulfate 52 Nitrate 14 Nitrite 2,7 Fluorure 5,9 Oxygène diss. 5,0	,896 mg/l ,942 mg/l 3 mg/l 95 mg/l	0,755 1,102 0,241 0,05 0,35 50,8 Fic	Appliquer <u>Annuler</u>

Les valeurs '0' sont prises par défaut pour les nitrates et les nitrites, ce qui est le cas de la plupart des eaux des circuits d'eau de chauffage. Mais, la concentration du fer divalent étant généralement nulle dans ce type de circuit, aucune valeur par défaut n'est fixée.

Après avoir renseigné ces trois concentrations, il suffit de cliquer sur « Appliquer » pour lancer le calcul :

십 LPLWin ver	rsion 5.1	3																	
Fichier Analyse	Visualiser	Rappo	rt Option	s ?															
10 - 4 -	0			00000		6.							<u> </u>					_	
W Eau: 1 Eta	ape: 0	Lŀ	WIN XX	XXXXXX		💯 Eau: 1 Et	ape: 1	L	omin XXX	XXXXX								_	
	Valeur	Unité	en me/l		Résultats										I				
Température	16.2	°C		ΣCations	5,882	Terreture	Valeur	Unite	en me/i	T.Caliana	Resultats	Unite	Equilibres	Ca Ust.	Marbre	Unite	Equilibre	Atmospher	Unite
Conductivité	600	uS/cm	492	ΣAnions	5,865	Conductivité	10,2	-C	500	2 Cations	6,10	me/i	pri Dolto oli	1.47	7,58		pri Delte el·l	0,0	
pH	7,3			Balance	-0,28	old	9.99	µ5/un	309	Balance	-0.27	me/i		-1,4/	-1,51	ma/l		-0,09	ma/l
TH	c 26,	of	5,2	H,CO	24,804	ты	0,00	of	5.2	HCO*	0.696	70 mc/	TAC	10 612	15 799	of	TAC	10 612	of
TA		٩f		HCO;	202,903	ТА	0.964	of	0 193	HCOT	218 229	mal	HCO*	22 228	12 466	mal	HCO*	0.866	mal
TAC	16,596	٩f	3,333	CO3-	0,204	TAC	19.613	of	3,923	CO ²	8.46	ma	HCOT	238.477	191.446	mal	HCOT	221.76	mg/l
CO ₂ libre	c 17,603	mg/l	0,4	CO ₂ Total	3,73	CO, libre	0.494	ma/l	0.011	CO, Total	3.73	mM/	CO ²	0.316	0.359	ma/l	CO ²	7.021	ma/l
Calcium	97,2	mg/l	4,86	λ	0,763	Calcium	97.2	ma/l	4.86	λ	0,469		CO. Total	4,273	3,346	mM/I	CO, Total	3,766	mM/
Magnésium	4,131	mg/l	0,34	SatuRatio	0,65	Maonésium	4.131	ma/l	0.34	SatuRatio	26.69		ACO_t	0.543	-0.384	mM/I	∆CO.t	0.037	mM/
Sodium	7,981	mg/l	0,347	Туре	Agressiv	Sodium	7,981	mg/l	0,347	Туре	Calcifiante		Calcium	97,2	81,832	mg/l	Saturatio	22,16	
Potassium	3,315	mg/l	0,085	SatuCO2	28,65	Potassium	2,515	mg/l	0,085	SatuCO2	0,8		SatuCO2	25,67	14,4		Туре	Calcifiante	
Ammonium	0,9	mg/l	0,05	Nom:		Ammonium	6,138	mg/l	0,282	Trait	Béduc, chim	N03			1	1			
Fer divalent	2,8	mg/l	0,1	,		Fer divalent	3,	mg/l	0,107	Réactif	Corrosion			Tracer	Impri	imer			
Manganèse	2,75	mg/l	0,1			Manganèse	3,75	mg/l	0.										(
Chlorure	28,01	mg/l	0,789		<u>C</u> alculer	Chlorure	28,01	mg/l	0,789				4	<u>T</u> raiter	Ferr	ner	Calcu	l d'incertitud	es
Sulfate	52,896	mg/l	1,102			Sulfate	52,896	mg/l	1,102						L				
Nitrate	14,942	mg/i	0,241	Classe d'ea	au selon la l	Nitrate		mg/l		Classe d'ex	au selon la Bi	éalementa	ation Eau in	crustante (Cl. 51/Ca C:	st	Indice	s et Constan	tes
Nitrite	2,3	mg/i	0,05			Nitrite		mg/l		Cidase det		sgiomonic	1000 J= ====						
Oracióna dina	5,95	mg/i	0,35 En e	Fichier		Fluorure	5,95	mgn	0,35										
Oxygene diss.	15,00	ing/i	30,0	Fichiel.	1	Oxygene diss.	0,00	mg/l	0,0	Fichier:									
Unités d'Er	ntrée Uni	ités de Si	ortie			Unités d'E	ntrée Uni	ités de S	ortie										
-												_		_	_	_		_	

Les concentrations des nitrates et des nitrites ont été ici ramenées à zéro et la concentration de l'ammonium a augmenté d'une quantité égale à la somme des nitrates et des nitrites préalablement présents (il faut rappeler que la valeur de la concentration de l'ammonium figurant dans la colonne « en me/l » n'est pas la concentration totale de l'ammonium mais celle de l'ammonium ionique – NH4+ - qui dépend lu pH de l'eau qui est ici assez élevé).

Enfin, quelles que soient les concentrations initiales de l'oxygène dissous, des nitrates et des nitrites, LPLWin affiche la valeur '0', ces réactions n'ayant lieu en milieu dépourvu d'oxygène.

6) GLOSSAIRE

Pour tous renseignements complémentaires voir l'ouvrage de Luc LEGRAND et Pierre LEROY "Prévention de la corrosion et de l'entartrage dans les réseaux de distribution d'eau" disponible chez CIFEC.

6-1) Domaine d'application du programme :

Le champ d'application du programme est le suivant :

- La minéralisation de l'eau est suffisamment faible pour que les relations entre concentrations et activités obéissent à des formules connues (constantes d'équilibre Debye, Hückel, Onsager, etc.) : force ionique inférieure à 0,1M/l. Dans l'état actuel de la chimie analytique et étant donné l'accès aux constants dans le logiciel, celui-ci peut être utilisé en connaissance de cause sur des eaux de concentrations plus élevées.

- L'eau contient en quantité négligeable des électrolytes faibles autres que l'acide carbonique et l'eau ellemême.

- Dans la zone de pH considérée, la formation d'ions complexes, d'hydroxydes, d'oxyanions, etc. est négligeable.

- La pression est voisine de la pression atmosphérique.

- La température ne dépasse pas 80°C.

- La quantité totale de CO_2 en phase liquide (sous forme de molécules ou d'ions) ne varie que par changement

de phase (gaz carbonique entre phase liquide et phase vapeur, carbonate de Calcium entre phase liquide et phase

solide).

6-2) L'ensemble des paramètres suivants est le minimum obligatoire à mesurer sur le terrain :

Température, pH ou H_2CO_3 (CO₂libre), Titre alcalimétrique complet, concentration en calcium, plus anions et cations pour permettre le calcul de la force ionique.

Selon que l'on se trouve au laboratoire ou sur le terrain il faudra opter pour des mesures permettant d'obtenir la meilleure précision, sachant que **pH** (ou CO₂libre) et température sont obligatoirement mesurés sur site. Il est rappelé que la mesure du pH sur site est plus précise en pratique que la mesure de la concentration en CO₂libre qui est donc facultative.

6-3) Conductivité électrique :

La conductivité électrique d'une eau est la conductance d'une colonne d'eau comprise entre deux électrodes

métalliques de 1 cm² de surface, séparées l'une de l'autre de 1 cm.

La conductivité électrique est l'inverse de la résistivité électrique. Elle est représentative de la teneur en matières minérales et sels dissous dans l'eau. La conductivité augmente quand la concentration en sels dissous augmente, et elle est fonction de la température.

Si la conductivité est comprise entre 200 et 333 micro-Siemens/cm, l'eau a une minéralisation moyenne. Unité :

Siemens/m ou micro-Siemens/cm.

La résistivité s'exprime en Ohm.cm.

résistivité(Ohm.cm)= 1 000 000/conductivité (microS/cm)

6-4) CO2 total, CO2libre :

Concentration totale en CO_2 , sous toutes ses formes, en milieu liquide, ou CMT = Carbone Minéral Total.

 $[CO_2 \text{ total}] = CMT.= [H_2CO_3]^* + [HCO_3^-] + [CO_3^2]^-$

La répartition du CO₂ selon le pH est donnée par le graphique suivant.

 $[H_2CO_3]^* = CO_2libre = CO_2dissous + [H_2CO_3]$ $CO_2dissous = dioxyde de carbone dissous non hydraté$ $[H_2CO_3] = dioxyde de carbone hydraté$ attention : PM $[H_2CO_3]^* = 62$ mais PM CO₂libre = 44

 $[HCO_3^-] = bicarbonate$

 $[CO_3^{2-}] = carbonate$

6-5) Concentrations à l'équilibre :

Pour lambda, force ionique et température constants, on détermine les concentrations de cette eau amenée à l'équilibre calcocarbonique. Deux équilibres calcocarbonique sont calculés :

- avec même concentration en calcium et en faisant varier la concentration [CO₂ total] (droite verticale), c'est à dire en simulant un échange de CO₂.

- en faisant varier les concentrations [CO₂ total] et [Ca²⁺] de la même quantité (droite de pente 1), c'est à dire en simulant l'essai au marbre.

6-6) SatuRatio :

Le Saturatio, ou indice de saturation, est un rapport quantitatif de la cinétique permettant d'apprécier le caractère agressif ou incrustant d'une eau : Saturatio = $[Ca^{2+}] \times [CO_3^{2-}] / Ks'$

Ks' = produit de solubilité du carbonate de calcium.

Le *SatuRatio* permet de quantifier facilement l'écart à l'équilibre et permet de comparer la vitesse de formation du dépôt calcique de 2 eaux.

Ne pas confondre avec l'indice de saturation de LANGELIER qui dépend du pH et n'est que qualitatif.

- Si Saturatio < 1 : l'eau est agressive.
- Si Saturatio = 1 : l'eau est à l'équilibre (habituellement de 0,99 à 1,10, cet intervalle est paramétrable dans le menu Option Calcul).
- Si Saturatio > 1 : l'eau est incrustante.

Le Saturatio idéale en tête de réseau d'eau potable est d'environ 1,2 car il évite l'entartrage et freine la corrosion (voir PREVENTION de la CORROSION et de l'ENTARTRAGE dans les RESEAUX de DISTRIBUTION d'EAU de Luc LEGRAND et Pierre LEROY, édité par CIFEC).

Si Saturatio > 40 : l'eau est instable et spontanément incrustante même en l'absence de germe précursseur de carbonate de calcium. L'indice DIN 38 404-10 peut être obtenu en calculant le logarithme décimal du Saturatio.

6-7) SatuCO2 :

Le *SatuCO2* est le rapport entre la concentration de CO_2 libre dans l'eau et celle qui correspond à l'équilibre avec l'air définie par la loi de Henry. Il est donc égal à 1 lorsque l'équilibre est atteint. Il est supérieur à 1 lorsque l'eau contient plus de CO_2 libre que le fixe la loi de Henry.

6-8) Ecart de balance ionique :

Différence en pourcentage entre la demi somme des concentrations en meq/l des cations et

des anions. Si l'analyse est correcte l'écart de balance ionique est proche de 0% pour un pH voisin de 7. On considère qu'un écart de balance compris entre -5% et +5% est acceptable.

6-9) Eléments caractéristiques :

Mg²⁺, Na⁺, K⁺, Cl⁻, SO₄²⁻, NO₃²⁻. Ils sont constants pour un graphique [CO₂ total] - [Ca²⁺] donné.

6-10) Eléments fondamentaux :

H⁺,OH⁻,Ca²⁺,HCO₃⁻,CO₃²⁻,H₂CO₃. Ils sont variables pour tous points du graphique [CO₂ total] - [Ca²⁺].

6-11) Essai au marbre :

L'essai au marbre permet de déterminer si une eau est agressive, incrustante ou à l'équilibre (inactive). La quantité de CaCO₃ échangée pendant l'essai au marbre (Δ CaCO₃ dans le programme) permet de quantifier le caractère incrustant ou agressif d'une eau. Malheureusement la manipulation au laboratoire a peu de valeur car la température n'est pa scelle du site et l'eau a évoluée pendant le transport. Par contre la simulation obtenue avec le programme est rigoureuse.

Mode opératoire au laboratoire :

Mesurer le pH (= pH initial) et l'alcalinité totale (= alcalinité totale initiale) de l'eau à analyser. Rincer une quantité suffisante de marbre blanc, chimiquement pur et finement divisé, avec de l'eau à analyser. Remplir au tiers, un erlenmeyer de 250 ml, avec le marbre rincé. Remplir d'eau à analyser l'erlenmeyer contenant le marbre, en introduisant l'eau au fond du récipient, au moyen d'un tube. Laisser déborder en évacuant toutes les bulles d'air. Boucher hermétiquement le récipient, sans bulles d'air. Après 48 heures, filtrer.

Sur le filtrat, mesurer le pH (= pH de saturation) et l'alcalinité totale (= alcalinité totale de saturation).

Si pH initial < pH de saturation et

alcalinité totale initiale < alcalinité totale de saturation, l'eau est agressive.

Si pH initial > pH de saturation et

alcalinité totale initiale > alcalinité totale de saturation, l'eau est incrustante.

6-12) Force ionique :

Force ionique = demi-somme du produit Cn*Vn2 pour chaque ion présent dans la solution. Cn concentration en mole/l de l'ion n. Vn valence de l'ion n.

6-13) Indice de saturation de LANGELIER :

L'indice de saturation de Langelier est une valeur en pourcentage (ou pH) permettant d'apprécier de façon qualitative et non quantitative le caractère agressif ou incrustant d'une eau.

Indice saturation = I = 100 * (pH - pHs) en pourcentage ou I = pH - pHs en unité pH. pHs

pHs = pH de saturation à l'équilibre avec $[Ca^{2+}] \times [HCO_3^{-}]$ constant. En pratique avec le programme : pHs = pH (*colonne Calcium constant*).

Si indice sat. > 0: l'eau est incrustante.

Si indice sat. < 0 : l'eau est agressive.

Si indice sat. = 0 : l'eau est à l'équilibre.

Ne pas confondre avec l'indice de saturation noté Saturatio qui dépend du produit de solubilité et qui est quantitatif.

6-14) lambda :

Lambda = (Demi-somme des charges des anions caractéristiques) - (demi-somme des charges des cations caractéristiques).

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.129/136

Si lambda est positif, la valeur minimale de $[Ca^{2+}]$, sur la courbe d'équilibre calcocarbonique $[CO_2 total]/[Ca^{2+}]$, est trés peu différente de lambda. La concentration en $[CO_2 total]$ correspondante est trés

faible.

Si lambda est négatif, la valeur minimale de $[Ca^{2+}]$, sur la courbe d'équilibre calcocarbonique $[CO_2 tota]/[Ca^{2+}]$, est très faible. La concentration en $[CO_2 tota]$ correspondante est trés peu différente de la

valeur absolue lambda.

Dans le programme le Lambda est calculé par Lambda = $([Ca^{2+}] - TAC)/2$ (en meq/l) pour obtenir une meilleure précision. Cette formule vient de la relation de neutralité électrique : $2[Ca^{2+}] + P = [HCO_3^-] + N$.

Voir p.16, 28 et 331 de l'ouvrage de Luc LEGRAND et Pierre LEROY "Prévention de la corrosion et de l'entartrage dans les réseaux de distribution d'eau" disponible chez CIFEC.

6-15) Masse moléculaire Valence :

	Masse me	oléculaire	Valence
Ca ²⁺	40		2
Mg^{2+}	24,3		2
Na ⁺	23		1
K ⁺	39		1
Cl	35,5		1
SO4 ²⁻	96		2
NO ₃ ²⁻	62		1
		Masse me	oléculaire
CaCO ₃		100	
Na ₂ CO ₃		106	
Ca(OH) ₂		74	
NaOH		40	
HCl		36,5	
Cl ₂		71	
FeCl ₃		162,5	
Al ₂ (SO ₄) ₃ ,	18 H2O	666	
$Al_2(SO_4)_3$		342	
CO_2		44	

6-16) pH (mesure et d'équilibre)

62

a) mesure du pH :

 H_2CO_3

Le pH saisi et utilisé par le programme pour les calculs, **doit obligatoirement être mesuré sur site** dès la prise d'échantillon et à la température de l'échantillon et non au laboratoire. La température saisie dans le programme sera celle de l'échantillon au prélèvement et non celle du laboratoire.

La compensation automatique de température, des pH-mètres potentiométriques, permet de rattraper l'interférence de la température sur la réponse de l'électrode pH, mais ne permet pas de prédire le pH à une autre température que celle de l'échantillon. Il faut donc faire la mesure de pH avec compensation de température et noter le pH et la température, au point de prélèvement, pour les saisir dans le programme. Si la température du réseau étudié diffère de la température obtenue lors de la mesure, il faudra faire un premier traitement de "mise à température dans le programme" pour obtenir le pH et les caractéristiques de l'eau correspondants à la température du réseau.

Sans ces précautions les résultats n'ont pas de valeur.

b) pH à l'équilibre avec même concentration en calcium :

Pour une eau à un pH donné ($[{\rm Ca}^{2+}],$ lambda, force ionique et température constants), on détermine le pH de

cette même eau à l'équilibre calcocarbonique avec même concentration en calcium.

Si pH à l'équilibre > pH, l'eau est agressive.

Si pH à l'équilibre < pH, l'eau est incrustante.

Si pH à l'équilibre = pH, l'eau est à l'équilibre.

6-17) Somme des anions :

Somme des concentrations en meq/l des anions caractéristiques : Cl^- , SO_4^{2-} , NO_3^{2-} , plus somme des anions fondamentaux : HCO_3^- , CO_3^{2-} , OH^- .

6-18) Somme des cations :

Somme des concentrations en meq/l des cations caractéristiques : Mg^{2+} , Na^+ , K^+ , plus somme des cations fondamentaux : Ca^{2+} , H_3O^+ .

6-19) TA et alcalinité composite :

Le titre alcalimétrique (simple) mesure la teneur en alcalis libres et en carbonates alcalins caustiques. TA = $2[CO_3^{2-}] + [OH^-] - [H^+]$

Le **TA** est égal à l'alcalinité mesurée au point d'inflexion du virage de la phénolphtaléine ou du titrage potentiométrique.

Unité : degré français, milli-équivalent par litre (meq/l).

1 degré français = 1/5 meq/l = 10 mg de carbonate de calcium / litre.

L'**alcalinité composite** (Ap) est égale à l'alcalinité mesurée au point de virage de la phénolphtaléine (8,3).

6-20) TAC et alcalinité totale :

Le titre alcalimétrique complet (total) mesure la teneur en alcalis libres, carbonates et hydrogénocarbonates.

 $TAC = [HCO_3^{-}] + 2[CO_3^{2-}] + [OH^{-}] - [H^{+}]$

Le **TAC** est égal à l'alcalinité mesurée au point d'inflexion du virage du méthylorange ou du titrage potentiométrique.

Unité : degré français, milli-équivalent par litre (meq/l).

1 degré français = 1/5 meq/l = 10 mg de carbonate de calcium / litre.

L'alcalinité totale (At) est égale à l'alcalinité mesurée au point de virage du méthylorange (4,5).

6-21) TH :

Le titre hydrotimétrique, ou dureté totale, est la somme des concentrations totales en calcium et en magnésium.

Une eau est douce si le TH < 75 mg/l de CaCO₃. Une eau est dure si le TH > 75 mg/l de CaCO₃. TH = $[Ca^{2+}] + [Mg^{2+}]$

Unité :

degré français, milli-équivalent par litre (meq/l).

1 degré français = 1/5 meq/l = 10 mg de carbonate de calcium / litre.

6-22) Unités :

meq/l:

milli-équivalent par litre Concentration(meq/l) = Concentration(mmole/l) x valence Concentration(meq/l) = <u>Concentration(mg/l) x valence</u> masse moléculaire

mmole/l:

milli-mole par litre Concentration(mmole/l) = <u>Concentration(meq/l)</u>

CIFEC, 12 bis rue du Cdt Pilot, 92200 Neuilly sur Seine, France -Tel: +33 (0)1 4640 4949 - Fax: +33 (0)1 4640087 - Email: info@cifec.fr - Web www.cifec.fr Notice 4021d du 14/01/2020 P.**131**/136

```
valence
Concentration(mmole/l) = <u>Concentration(mg/l)</u>
masse moléculaire
```

```
mg/l :
```

milli-gramme par litre. C (mg/l) = C (mmole/l) x masse moléculaire C (mg/l) = <u>C (meq/l) x masse moléculaire</u>

valence degré français : 1 degré français = 1 °F = 1/5 meq/l = 10 mg/l de carbonate ou 4 mg/l de calcium. milliéquivalent = 1 meq/l = 50 mg/l de carbonate de calcium = 5 °F degré allemand : 1 degré allemand = 17,86 mg/l de carbonate de calcium = 1,786 °F degré anglais : 1 degré anglais = 14,3 mg/l de carbonate de calcium = 1,43 °F degré américain : 1 degré américain = 17,2 mg/l de carbonate de calcium = 1,72 °F degré russe : 1 degré russe = 2,5 mg/l de carbonate de calcium = 0,25 °F ppm : 1 ppm de CaCO₃ équivalent = 1 mg/l de carbonate de calcium = 0,1 °F Degré Boutron-Boudet = 10 mg savon Marseille / l = 10,27 mg/l de carbonate de calcium = 1,027 °F

6-23) CO2 équilibrant : par rapport à l'équilibre à [Ca2+] constant

Ancienne appellation indiquée pour mémoire : L'acide carbonique libre $(H_2CO_3^*)$ d'une solution à l'équilibre avec le calcaire est appelé acide carbonique équilibrant. Dans le cas d'une eau agressive, on convient d'appeler "acide carbonique équilibrant" l'acide carbonique libre d'une solution à l'équilibre ayant le même produit $[Ca^{2*}] \times [HCO_3^-]$ que l'eau étudiée. Une eau est agressive si la concentration en acide carbonique libre est supérieure à la concentration en "acide carbonique équilibrant". En pratique avec le programme : $[CO_2 \text{ équilibrant}] = [H_2CO_3^*]$ (colonne Ca Cst.).

6-24) CO2 excédentaire : par rapport à l'équilibre à [Ca2+] constant

Ancienne appellation indiquée pour mémoire : Il correspond à la différence entre le " CO_2 libre" $(H_2CO_3^*)$ d'une eau et son " CO_2 équilibrant". Le " CO_2 excédentaire" n'existe que pour les eaux agressives. Il ne faut pas confondre comme c'est souvent le cas, acide excédentaire et acide agressif.: [CO_2 libre] = [CO_2 équilibrant] + [CO_2 excédentaire]

 $[CO_2 \text{ libre}] \neq [CO_2 \text{ équilibrant}] + [CO_2 \text{ agressif}]$

En pratique avec le programme : $[CO_2 \text{ excédentaire}] = [H_2CO_3^*]$ (colonne résultats) - $[H_2CO_3^*]$ (colonne Ca Cst.).

6-25) CO2 agressif : par rapport à l'équilibre de l'essai au marbre

Ancienne appellation indiquée pour mémoire : L'acide carbonique libre $(H_2CO_3^*)$ agressif d'une eau est égal à la différence entre l'acide carbonique de cette eau et l'acide carbonique libre d'une solution à l'équilibre ayant la même différence de concentration ([CO₂ total] - [Ca²⁺]).

Notion venant de l'ancienne notation : $CO_2 + CaCO_3 \rightarrow Ca(HCO_3)_2$

L'acide carbonique libre agressif d'une eau est donc égal à la différence entre l'acide carbonique de cette eau et l'acide carbonique libre de cette même eau à la fin de l'essai au marbre (évolution en présence de calcaire).

 $[CO_2 \text{ excédentaire}] > [CO_2 \text{ agressif}].$

En pratique avec le programme : $[CO_2 \text{ agressif}] = [H_2CO_3^*]$ (colonne résultats) - $[H_2CO_3^*]$ (colonne marbre).

Cette appellation est à abandonnée car pour une eau dont le point figuratif se trouve à gauche du nez de la courbe d'équilibre et sous la droite de pente 2, on calculer un CO_2 agressif alors que cette eau ne contient pas de CO_2 libre mais seulement des carbonates et bicarbonates.

6-26) Agressivité totale ou Agressivité au calcaire :

Ancienne appellation indiquée pour mémoire : L'agressivité totale d'une eau, ou agressivité au calcaire, est égale à l'acide carbonique libre agressif de cette eau :

Agressivité en mg/l de $CaCO_3 = 100 [CO_2 agressif] en mmole/l.$

Agressivité totale d'une eau est aussi égale à la différence entre la concentration en Ca^{2+} de cette eau et la concentration en Ca^{2+} de cette même eau à la fin de l'essai au marbre.

6-27) Indices de corrosivité, Larson et Leroy :

La corrosivité d'une eau est jugée selon deux critères complémentaires : Indice de Larson :

Indice de Larson = $([Cl^-] + [SO_4^{2-}]) / [HCO_3^-]$ avec des concentrations en me/l. L'eau est considérée comme non corrosive si l'indice de Larson est inférieur à 0,8 ou mieux à 0,5.

Indice de Leroy :

Indice de Leroy = $[HCO_3^-]/[Ca^{2+}]$ avec des concentrations en me/l.

L'eau est considérée comme non corrosive si l'indice de Leroy est compris entre 0,7 et 1,3.

6-28) Classes d'eau selon la réglementation en France, définie par la DGS :

Le Ministère de la Santé, dans la circulaire du 23 janvier 2007, qui précise les arrêtés du 11 janvier 2007, indique que l'eau doit être à l'équilibre ou légèrement incrustante. Il fixe aussi 5 classes en fonction de la différence entre le pH d'équilibre et le **pH de l'eau mesuré in situ**. La circulaire 2003-445 du 17 septembre 2003 précise que la méthode Legrand et Poirier doit être utilisée. Ce que fait parfaitement votre logiciel LPLWin.

Toutefois, la circulaire ne précise pas explicitement si le pH d'équilibre à prendre en compte est le pH d'équilibre à calcium constant (pHs de Langelier) ou bien le pH d'équilibre après contact avec le marbre (pH après contact avec le carbonate de calcium ou encore appelé pH au marbre). Ainsi, les contrôles sanitaires pouvant opter pour l'une ou l'autre référence, LPLWin permet de choisir l'une des deux en cliquant sur le bouton correspondant dans le menu Options/Calcul.

Les 5 classes d'eaux sont les suivantes :

1^{re} classe : eau à l'équilibre calcocarbonique : - $0,2 \le pH_{eq}$ - pH *in situ* $\le 0,2$

 2^e classe : eau légèrement agressive : 0,2 - <math display="inline">p H in situ $\leq 0,3$

 3^e classe : eau agressive : 0,3 < pH_{eq} - pH in situ

 4^e classe : eau légèrement incrustante : - $0,3 \leq p H_{eq}$ - p H in situ < - 0,2

 5^{e} classe : eau incrustante : pH_{eq} - pH *in situ* < - 0,3

LPLWin affiche dans la feuille d'étape, l'intitulé et la classe de l'eau considérée. Les limites fixées par défaut sont celles qui sont indiquées dans l'arrêté du 23/01/2007. Le logiciel permet de modifier ces valeurs notamment si un nouvel arrêté venait à en modifier les limites. La modification peut s'effectuer soit en cliquant sur les flèches situées à gauche de la zone de saisie (pas de 0,05 unité pH) soit en entrant directement la nouvelle valeur dans la zone de saisie.

Attention: le logiciel SISE-Eaux, des laboratoires, utilise une autre classification selon PH in situ - pHeq.

1^{re} classe DGS = classe 2 SISE : eau à l'équilibre calcocarbonique : - $0,2 \le pH_{eq}$ - pH in situ $\le 0,2$

 2^{e} classe DGS = classe 3 SISE : eau légèrement agressive : $0,2 < pH_{eq}$ - pH in situ $\leq 0,3$

 3^{e} classe DGS = classe 4 SISE : eau agressive : 0,3 < pH_{eq} - pH *in situ*

4^e classe DGS = classe 1 SISE : eau légèrement incrustante : - $0,3 \le pH_{eq}$ - pH in situ < - 0,2

 5^{e} classe DGS = classe 0 SISE : eau incrustante : pH_{eq} - pH *in situ* < - 0,3

7) Notice 2987c ANALYSES de VALIDATION du Logiciel LPLWIN 5

Après installation du logiciel LPLWIN, merci de le valider en comparant les résultats obtenus. Origine : ouvrage « Prévention de la corrosion et de l'entartrage... » L.Legrand et P.Leroy.

1) Avec option de calcul à :

MODE de DOSAGE TAC = Oui = potentiométrie au point d'équivalence, inflexion.

Saisir les nombres de la colonne **valeur**, non précédés de « c » et cliquer sur « Calculer ». Comparer les résultats pour validation.

a) page 180-181 :

🗊 Eau: 1 Etap	e:0 L	.PWIN v	5.29 s:8473	33718									• 🗙
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphère	Unité
Température	16,2	°C		ΣCations	5,632	me/I	pН	7,49	7,51		pH	8,73	
Conductivité	c 566	µS/cm	464	ΣAnions	5,618	me/I	Delta pH	-0,11	-0,09		Delta pH	1,13	
pН	7,6			Balance	-0,25	%	ACaCO,		-4,238	mg/l	Δ CO ₂	-8,107	mg/l
TH	c 26,000	٩f	5,200	H,CO,	12,289	mg/I H2CO	TAC	16,430	16,006	٩f	TAC	16,430	٩f
TA		٩f		HCO;	199,626	mg/l	H ₂ CO ₃ *	15,846	14,827	mg/I H2CO	H,CO	0,866	mg/I H2CO
TAC	16,43	٩f	3,286	CO32-	0,399	mg/l	HCO;	199,808	194,630	mg/l	HCO;	189,846	mg/l
CO ₂ libre	c 8,721	mg/l	0,198	CO ₂ Total	3,477	mM/I	CO32-	0,310	0,314	mg/l	CO3-	5,120	mg/l
Calcium	97,2	mg/l	4,860	λ	0,787	mM/I	CO ₂ Total	3,536	3,435	mM/I	CO ₂ Total	3,212	mM/I
Magnésium	4,131	mg/l	0,340	SatuRatio	1,29		∆CO₂t	0,059	-0,042	mM/I	∆CO₂t	-0,266	mM/I
Sodium	7,981	mg/l	0,347	Туре	Calcifiante		Calcium	97,200	95,505	mg/l	Saturatio	16,48	
Potassium	3,315	mg/l	0,085	SatuCO2	14,19		SatuCO2	18,3	17,12		Туре	Calcifiante	
Ammonium	0	mg/l		Nom:									
Fer divalent	0	mg/l											
Manganèse	0	mg/l											
Chlorure	28,01	mg/l	0,789										
Sulfate	62,496	mg/l	1,302										
Nitrate	14,942	mg/l	0,241	Classe d'or	u selon la Dá	ádlementatia	n Eauàllér	uilibre (CL	11/Ca Cst				
Nitrite	0	mg/l			iu seionia ne	sylementatio		fambro (or	1,700.000				
Fluorure	0	mg/l										_	
Oxygène diss.	0	mg/l	0,0	Fichier:									
				- L									

b) page 183 :

ট Eau: 1 Etap	e:0 l	.PWIN v	5.29 s:847	33718									• ×
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphère	Unité
Température	17,0	°C		ΣCations	7,630	me/I	pH	7,19	7,14		pH	8,99	
Conductivité	c 709	µS/cm	593	ΣAnions	7,647	me/I	Delta pH	0,12	0,07		Delta pH	1,92	
pН	7,07			Balance	0,22	%	ACaCO,	1	14,988	mg/l		-54,329	mg/l
TH	c 32,830	٩f	6,566	H,CO,	77,405	mg/I H2CO	TAC	31,185	32,684	of	TAC	31,185	٩f
TA		٩f		HCO ₃	379,973	mg/l	H ₂ CO ₃	59,308	68,167	mg/I H2CO	H ₂ CO [*]	0,849	mg/I H2CO
TAC	31,185	٩f	6,237	CO ₃ ²⁻	0,235	mg/l	HCO ₃	379,832	398,143	mg/l	HCO ₃	344,212	mg/l
CO ₂ libre	c 54,932	mg/l	1,248	CO ₂ Total	7,481	mM/I	CO ₃ ²⁻	0,307	0,295	mg/l	CO3-	17,650	mg/l
Calcium	104	mg/l	5,200	λ	-0,519	mM/I	CO ₂ Total	7,188	7,631	mM/I	CO ₂ Total	5,951	mM/I
Magnésium	16,597	mg/l	1,366	SatuRatio	0,77		∆CO₂t	-0,293	0,150	mM/I	∆CO₂t	-1,531	mM/I
Sodium	19,412	mg/l	0,844	Туре	Agressive		Calcium	104,000	109,995	mg/l	Saturatio	56,93	
Potassium	8,58	mg/l	0,220	SatuCO2	91,12		SatuCO2	69,82	80,25		Туре	Calcifiante	
Ammonium	0	mg/l		Nom:									
Fer divalent	0	mg/l											
Manganèse	0	mg/l											
Chlorure	30,814	mg/l	0,868										
Sulfate	26,016	mg/l	0,542										
Nitrate	0	mg/l		Classe d'au	u colon la Di	(- l t - t -	- Fau à l'ér	nuilibre (CL	11/Ca Cet	_			
Nitrite	0	mg/l			iu seion la Re	sylementatio		quindre (Cl.	ny ca cat				
Fluorure	0	mg/l									-		
Oxygène diss.	0,00	mg/l	0,0	Fichier:									

2) Avec option de calcul à : MODE de DOSAGE TAC = Non = Valeur du pH de virage fixe = 4.5

Saisir les nombres de la colonne valeur, non précédés de « c » et cliquer sur « Calculer ».

a) page 188 : attention aux unités, après 3 messages d'avertissement :

ট Eau: 1 Etap	e:0 L	.PWIN v	5.29 s:847	33718									• ×
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphère	Unité
Température	35,0	°C		ΣCations	1,120	me/l	pН	8,61	8,51		pН	8,13	
Conductivité	c 120	µS/cm	147	ΣAnions	1,091	me/I	Delta pH	0,86	0,76		Delta pH	0,38	
pН	7,75			Balance	-2,58	%	ACaCO,		3,613	mg/l	Δ CO ₂	-0,601	mg/l
TH	c 3,600	٩f	0,720	H ₂ CO ₃ *	1,443	mg/I H2CO	TAC	3,257	3,619	٩f	TAC	3,257	٩f
TA		٩f		HCO;	39,397	mg/l	H,CO3	0,189	0,265	mg/I H2CO	H,CO;	0,596	mg/I H2CO
TAC	0,674	me/l	0,651	CO32-	0,138	mg/l	HCO;	37,345	42,027	mg/l	HCO;	38,923	mg/l
CO ₂ libre	c 1,024	mg/l	0,023	CO ₂ Total	0,671	mM/I	CO3-	0,952	0,862	mg/l	CO ₃ ²⁻	0,327	mg/l
Calcium	0,620	me/l	0,620	λ	-0,016	mM/I	CO ₂ Total	0,631	0,708	mM/I	CO ₂ Total	0,653	mM/I
Magnésium	0,1	me/l	0,100	SatuRatio	0,15		∆CO₂t	-0,040	0,036	mM/I	∆CO₂t	-0,018	mM/I
Sodium	0,35	me/l	0,350	Туре	Agressive		Calcium	12,400	13,845	mg/l	Saturatio	0,34	
Potassium	0,050	me/l	0,050	SatuCO2	2,42		SatuCO2	0,32	0,44		Туре	Agressive	
Ammonium	0	me/l		Nom:									
Fer divalent	0	me/l		· ·									
Manganèse	0	me/l											
Chlorure	0,360	me/l	0,360										
Sulfate	0,080	me/l	0,080										
Nitrate	0	me/l		Classe d'ea	u selon la Ré	alementatio	E au agre	ssive (CL3)	VCa Cst				
Nitrite	0	me/l		Classe dea	iu sciori la ne	sylementation		00.10 (01. 0)	, 03 000				
Fluorure	0	me/l										_	
Oxygène diss.	0,00	mg/l	0,0	Fichier:	C:\Users\L	D\Documer	its\LPLWIN\L	.pw\Validat	ion\p188.lp	w			

b) page 192 :

ট Eau: 1 Etap	e:0 L	.PWIN v	5.29 s:847	33718									
	Valeur	Unité	en me/l		Résultats	Unité	Equilibres	Ca Cst.	Marbre	Unité	Equilibre	Atmosphère	Unité
Température	35,0	°C		ΣCations	1,950	me/l	pH	8,02	8,05		pН	8,41	
Conductivité	c 203	µS/cm	247	ΣAnions	1,897	me/l	Delta pH	-0,37	-0,34		Delta pH	0,02	
рН	8,39			Balance	-2,78	%	ACaCO ₃		-2,493	mg/l		-0,018	mg/l
тн	c 7,750	٩f	1,550	H ₂ CO [*]	0,621	mg/I H2CO	TAC	6,383	6,133	٩f	TAC	6,383	of
ТА	c 0,073	٩f	0,015	HCO ₃	75,137	mg/l	H ₂ CO ₃ *	1,494	1,328	mg/I H2CO	H ₂ CO	0,423	mg/I H2CO
TAC	1,29	me/l	1,277	CO3-	1,204	mg/l	HCO;	76,687	73,599	mg/l	HCO;	75,030	mg/l
CO ₂ libre	c 0,441	mg/l	0,010	CO ₂ Total	1,262	mM/I	CO32-	0,522	0,540	mg/l	CO ₃ ²⁻	1,252	mg/l
Calcium	1,27	me/l	1,270	λ	-0,003	mM/I	CO ₂ Total	1,290	1,237	mM/I	CO ₂ Total	1,260	mM/I
Magnésium	0,280	me/l	0,280	SatuRatio	2,31		∆CO₂t	0,028	-0,025	mM/I	∆CO₂t	-0,001	mM/I
Sodium	0,35	me/l	0,350	Туре	Calcifiante		Calcium	25,400	24,403	mg/l	Saturatio	2,4	
Potassium	0,050	me/l	0,050	SatuCO2	1,04		SatuCO2	2,51	2,23		Туре	Calcifiante	
Ammonium	0	me/l		Nom:									
Fer divalent	0	me/l											
Manganèse	0	me/l											
Chlorure	0,360	me/l	0,360										
Sulfate	0,260	me/l	0,260										
Nitrate	0	me/l		Classe d'ea	u selon la Ré	ádementatio	- Eauliner	istante (CL	51/Ca Cst				
Nitrite	0	me/l		Ciasse dea	iu sciori la ne	sylementation		ionarito (or	0,.00.000				
Fluorure	0	me/l										_	
Oxygène diss.	0,00	mg/l	0,0	Fichier:	C:\Users\L	D\Documer	nts\LPLWIN\L	.pwWalida	tion\p192.lp	w			

3) RESULTAT :

Si les résultats obtenus sont conformes : l'installation est validée. Sinon, vérifier :

- a) valider avec la touche (retour chariot) après saisie des nitrates et avant de cliquer sur "Calculer". Sinon les nitrates ne sont pas intégrés dans le calcul.
- b) vérifier que vous utilisez pour la saisie le séparateur décimale paramétré dans votre Windows (panneau de configuration/ Paramètres régionaux/Séparateur décimale) : "point" ou "virgule". Sinon les décimales ne sont pas intégrées dans le calcul.
- c) vérifier que le mode de dosage du TAC correspond à celui utilisé pour l'analyse saisie. Sinon le TAC sera faux (important pour les eaux à CO2T faible ou pH faible).
- d) vérifier que, si le mode choisi de dosage du TAC est "Non = colorimétrie", le pH de virage est bien 4.5 ou 4,5 selon le séparateur décimale choisi en b) ci-dessus.

8) FORMULAIRE D'ENREGISTREMENT

rimer N	/euillez m'enregistrer en luméro de série OBLIGA système :	tant qu'utilisateur du lo TOIRE :	giciel : LPLWin 5.29 en date du :
Titre M	Prénom :	Nom :	
Organisme :	Service :		
Adresse :			
Code Postal :		Ville, Etat :	
Pays :			
Tél. :		Fax:	
eMail :			
Web :			
	Cocher la case	e correspondante et comp	léter :